

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION **SEMESTER I SESSION 2013/2014**

COURSE NAME : DC ELECTRICITY AND MAGNETISM

COURSE CODE : BNR12203

PROGRAMME : BNE

EXAMINATION DATE : JANUARY 2014

DURATION

: 3 HOURS

INSTRUCTION : ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

| (a)                                                              | Briefly explain the following:                                                                                 |                                                                     |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
|                                                                  | i) DC system.                                                                                                  |                                                                     |  |
|                                                                  | (1 mark                                                                                                        |                                                                     |  |
|                                                                  | ii) AC system.                                                                                                 |                                                                     |  |
|                                                                  | (1 mark)                                                                                                       |                                                                     |  |
|                                                                  | iii) Active element. (1 mark)                                                                                  |                                                                     |  |
| (b)                                                              |                                                                                                                |                                                                     |  |
| (0)                                                              | Calculate the equivalent resistance $R_{ab}$ at terminals $a$ - $b$ for the circuit in Figure Q1(b). (5 marks) |                                                                     |  |
| (c) Obtain the values of $i_1$ and $i_2$ in the circuit shown in | Obtain the values of $i_1$ and $i_2$ in the circuit shown in Figure Q1 (c).                                    |                                                                     |  |
|                                                                  | (3 marks)                                                                                                      |                                                                     |  |
| (d)                                                              | Referring to Figure Q2 (b), find:                                                                              |                                                                     |  |
|                                                                  | (i) Voltage $v_1$ and $v_2$                                                                                    |                                                                     |  |
|                                                                  | (4 marks)                                                                                                      |                                                                     |  |
|                                                                  | (ii) Current $i_1$ and $i_2$ (3 marks)                                                                         |                                                                     |  |
|                                                                  |                                                                                                                |                                                                     |  |
|                                                                  | (iii) Power dissipated in the $40\Omega$ resistor. (2 marks)                                                   |                                                                     |  |
|                                                                  |                                                                                                                |                                                                     |  |
| (a)                                                              | (a)                                                                                                            | State Kirchoff's Voltage Law (VVIII) and write its assumed from the |  |
| (a)                                                              | State Kirchoff's Voltage Law (KVL) and write its general formula.                                              |                                                                     |  |
|                                                                  | (2 marks)                                                                                                      |                                                                     |  |
| (b)                                                              | Referring to Figure Q2(b);                                                                                     |                                                                     |  |
|                                                                  | (i) Use Kirchoff's voltage law to express equations for the two indicated loops                                |                                                                     |  |
|                                                                  | $(I_1 \text{ and } I_2)$ in terms of voltages labelled. (2 marks)                                              |                                                                     |  |
|                                                                  | (ii) Express $V_2$ in terms of $I_1$ , $I_2$ and $R_2$ .                                                       |                                                                     |  |
|                                                                  | (1 mark)                                                                                                       |                                                                     |  |
| (c)                                                              | (c) Referring to circuit of Figure 2(c), use Kirchoff's laws to analyze the unknown cur and voltages.          |                                                                     |  |
|                                                                  | (15 marks)                                                                                                     |                                                                     |  |
|                                                                  | (b) (c) (d) (b)                                                                                                |                                                                     |  |

| Q3 | (a) | Determine the number of branches and nodes referring to the circuit shown in Figure Q2(a).  (2 marks)                                                                                                                                                                                      |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | Determine the node voltages and power dissipated in $R_x$ for the circuit shown in figure                                                                                                                                                                                                  |
|    |     | <b>3(b)</b> using nodal analysis? Use Cramer's rule in solving the problem. (10 marks)                                                                                                                                                                                                     |
|    | (c) | Find the current in the $4\Omega$ resistor in the circuit shown in Figure 3(c) using Mesh analysis.                                                                                                                                                                                        |
|    |     | (8 marks)                                                                                                                                                                                                                                                                                  |
|    |     |                                                                                                                                                                                                                                                                                            |
| Q4 | (a) | State maximum power transfer theorem. (2 marks)                                                                                                                                                                                                                                            |
|    | (b) | Find the value of $R_L$ in the circuit shown in Figure Q4(b) that results in maximum                                                                                                                                                                                                       |
|    |     | power to be produced in $R_L$ . What is the value of $P_{Lmax}$ ? (10 marks)                                                                                                                                                                                                               |
|    | (c) | Find Norton's equivalent circuit for the network to the left of terminal $a$ and $b$ in Figure Q4(c).                                                                                                                                                                                      |
|    |     | (8 marks)                                                                                                                                                                                                                                                                                  |
|    |     |                                                                                                                                                                                                                                                                                            |
| Q5 | (a) | Discuss electromagnetism in brief. Use appropriate diagram to show magnetic field                                                                                                                                                                                                          |
|    |     | lines direction related to current flows. (5 marks)                                                                                                                                                                                                                                        |
|    | (b) | State the rule to determine the direction of force on a current carrying conductor in a                                                                                                                                                                                                    |
|    |     | magnetic field for motor mode operation. (2 marks)                                                                                                                                                                                                                                         |
|    | (c) | A mild steel ring has a mean circumference of 500 mm and a uniform cross-sectional area of 300 mm $^2$ . An air gap, 1mm in length is now cut in the ring. Assume the relative permeability of the mild steel to remain constant at 1200. This produces a flux of 500 $\mu$ Wb. Determine: |
|    |     | i) the magnetic force                                                                                                                                                                                                                                                                      |
|    |     | ii) the magnetomotive force                                                                                                                                                                                                                                                                |
|    |     | ii) the magnetomotive force (3 marks)                                                                                                                                                                                                                                                      |
|    |     | iii) the reluctance of the steel ring and air gap (4 marks)                                                                                                                                                                                                                                |
|    |     | iv) the flux produced if the magnetomotive force remains constant (3 marks)                                                                                                                                                                                                                |
|    |     | 3                                                                                                                                                                                                                                                                                          |

#### BNR12203

| Q6 | (a) | Explain the functions of the following components of DC machine:                                                                                                                            |          |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |     | i) windings (3                                                                                                                                                                              | 3 marks) |
|    |     | ii) commutator (3                                                                                                                                                                           | 3 marks) |
|    | (b) | Sketch the equivalent circuit of a DC generator. (3                                                                                                                                         | 3 marks) |
|    | (c) | A shunt DC motor rating at 1200 r/min is fed by a 100V source. The line cu 25A and the shunt-field resistance is $100\Omega$ . If the armature resistance is $0.2\Omega$ , c the following: |          |
|    |     | i) the current in the armature (3                                                                                                                                                           | 3 marks) |
|    |     | ii) the counter-emf (4                                                                                                                                                                      | l marks) |
|    |     | iii) The mechanical power developed by the motor (4                                                                                                                                         | l marks) |

- END OF QUESTION -

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : DC ELECTRICITY AND MAGNETISM

PROGRAMME: BNE

COURSE CODE: BNR 12203





FIGURE Q1(c)



SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: DC ELECTRICITY AND MAGNETISM

PROGRAMME: BNE

COURSE CODE: BNR 12203



#### FIGURE Q2(b)



### FIGURE Q2(c)



FIGURE Q3(a)

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: DC ELECTRICITY AND MAGNETISM COURSE CODE: BNR 12203

PROGRAMME: BNE





FIGURE Q3(c)

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : DC ELECTRICITY AND MAGNETISM

PROGRAMME: BNE

COURSE CODE: BNR 12203



FIGURE Q4(b)



n seem in out of the seem of the seem Driver of the seem of the se