

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2013/2014

COURSE NAME : MASS TRANSFER

COURSE CODE : BNQ 20303

PROGRAMME : 2 BNN

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FOUR (4) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

BNQ 20303

Q1	(a) State the Fick's law of diffusion analogy terms.	(2 marks)
	(b) Discuss the concept of mass transfer.	(3 marks)
	(c) Explain briefly about the diffusion coefficient D_{AB} .	(5 marks)
	(d) Explain the differences of steady state and unsteady state mass trans	fer. (5 marks)
	(e) State FIVE (5) types of dimensionless number that usually used in mass transfer.	
		(5 marks)
Q2	A sphere of naphthalene having a radius of 2.0 mm is suspended in a large volume of still air at 318 K and 1.01325 X 10^5 Pa (1 atm). The surface temperature of the naphthalene can be assumed to be at 318 K and its vapor pressure at 318 K is 0.555 mm Hg. The D _{AB} of naphthalene in air at 318 K is 6.92 x 10^{-6} m ² /s. Solve the rate of evaporation of naphthalene from the surface. (20 marks	

A very thick slab has a uniform concentration of solute A of $c_o = 1.0 \times 10^{-2}$ kg mol A/m³. Suddenly, the front face of the slab is exposed to a flowing fluid having a concentration $c_1 = 0.1$ kg mol A/m³ and a convective coefficient $k_c = 2 \times 10^{-7}$ m/s. The equilibrium distribution coefficient $K = c_{Li}/c_i = 2.0$. Assuming that the slab is a semi-infinite solid, calculate the concentration in the solid at the surface at the following distance from the surface after $t = 3 \times 10^4$ s. The diffusivity in the solid is $D_{AB} = 4 \times 10^{-9}$ m²/s.

(a)
$$x = 0 \text{ m}$$
 (10 marks)

(b)
$$x = 0.01 \text{ m}$$
 (10 marks)

- Pure water at 26.1 °C is flowing at a velocity of 0.0305 m/s in a tube having an inside diameter of 6.35 mm. The tube is 1.829 m long, with the last 1.22 m having the walls coated with benzoic acid. The solubility of benzoic acid in water is 0.02948 kg mol/m³. Assuming that the velocity profile is fully developed,
 - (a) Illustrate and label the diagram of the tube.

(5 marks)

(b) Calculate the average concentration of benzoic acid at the outlet. $\mu = 8.71 \times 10^{-4} \text{ Pa.s}, \, \rho = 996 \text{ kg/m}^3, \, D_{AB} = 1.245 \times 10^{-9} \text{ m}^2/\text{s}.$

(15 marks)

- In a single-stage leaching of soybean with hexane, 100 kg of soybean containing 20 wt% oil is leached with 100 kg of fresh hexane solvent. The value of N for the slurry underflow is essentially constant at 1.5 kg insoluble solid/kg solution retained.
 - (a) Construct the process flow diagram and label the process variables.

(5 marks)

(b) Calculate the amounts and compositions of the overflow V_1 and the underflow slurry L_1 leaving the stage.

(15 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : MASS TRANSFER

PROGRAMME: 2 BNN COURSE CODE: BNQ 20303

FORMULA

(i)
$$p_{BM} = \frac{p_{B1} + p_{B2}}{2}$$

$$N_{A1} = \frac{D_{AB}P(p_{A1} - p_{A2})}{RTr_1p_{BM}}$$

FIGURE 5.3-3. Unsteady-state heat conducted in a semiinfinite solid with surface convection. Calculated from Eq. (5.3-7)(SI).

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014 COURSE NAME : MASS TRANSFER PROGRAMME: 2 BNN COURSE CODE: BNQ 20303

(iii) Table 7.1-1. Relation Between Mass- and Heat-Transfer Parameters for Unsteady-State Diffusion*

	Mass Transfer		
Heat Transfer	$K = c_L/c = 1.0$	$K = c_L/c \neq 1.0$	
$Y, \frac{T_1 - T}{T_1 - T_0}$	$\frac{c_1-c}{c_1-c_0}$	$\frac{c_1/K - c}{c_1/K - c_0}$	
$1 - Y, \frac{T - T_0}{T_1 - T_0}$	$\frac{c-c_0}{c_1-c_0}$	$\frac{c-c_0}{c_1/K-c_0}$	
$X, \frac{\alpha t}{x_1^2}$	$\frac{D_{AB}t}{x_1^2}$	$\frac{D_{AB}t}{x_1^2}$	
$\frac{x}{2\sqrt{\alpha t}}$	$\frac{x}{2\sqrt{D_{AB}t}}$	$\frac{x}{2\sqrt{D_{AB}t}}$	
$m, \frac{k}{hx_1}$	$\frac{D_{AB}}{k_c x_1}$	$\frac{D_{AB}}{Kk_c x_1}$	
$\frac{h}{k}\sqrt{\alpha t}$	$\frac{k_c}{D_{AB}} \sqrt{D_{AB} t}$	$\frac{Kk_c}{D_{AB}}\sqrt{D_{AB}t}$	
$n, \frac{x}{x_1}$	$\frac{x}{x_1}$	$\frac{x}{x_1}$	

^{*} x is the distance from the center of the slab, cylinder, or sphere; for a semiinfinite slab, x is the distance from the surface. c_0 is the original uniform concentration in the solid, c_1 the concentration in the fluid outside the slab, and c the concentration in the solid at position x and time t.

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014 COURSE NAME : MASS TRANSFER PROGRAMME: 2 BNN COURSE CODE: BNQ 20303

(iv)
$$N_{\text{Re}} = \frac{D \upsilon \rho}{\mu}$$

$$N_{Sc} = \frac{\mu}{\rho D_{AB}}$$

$$\left(\frac{W}{D_{AB}\rho L}\right) = N_{\text{Re}} N_{Sc} \frac{D}{L} \frac{\pi}{4}$$

$$\frac{c_{A} - c_{Ao}}{c_{Ai} - c_{Ao}} = 5.5 \left(\frac{W}{D_{AB}\rho L}\right)^{-\frac{2}{3}}$$