

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2014/2015

COURSE NAME

: ELECTRONICS TECHNOLOGY AND

MICROPROCESSING

COURSE CODE

: BNJ 30302

PROGRAMME

: 3BNL

EXAMINATION DATE : DECEMBER 2014/JANUARY 2015

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

Q1	(a)	Discuss the differences among insulator, conductor and semiconductor.	(6 marks)
	(b)	<i>pn</i> junction is a basic part in creating a diode. Explain the process of creating junction from <i>p-type</i> semiconductor and <i>n-type</i> semiconductor.	
			(8 marks)
	(c)	Briefly explain the following semiconductor terms. (i) Forward-bias (ii) Reverse-bias (iii) Depletion region	(6 marks)
Q2	(a)	Briefly explain any TWO (2) of the following diode models.	
		 (i) Simplified diode model (ii) Constant voltage drop model (iii) Zener diode model 	
			(6 marks)
	(b)	Analyse the bridge rectifier in the diagram in the Figure $\mathbf{Q2}(\mathbf{b})$ and \mathbf{c} waveform based on the diagram.	construct a (8 marks)
	(c)	Briefly explain the usage of a transistor.	
		*	(6 marks)

Q3	(a)	Condition codes register (CCR) contains FIVE (5) status bits that may be directly
		tested by the programmer.

(i) List out all status bits in CCR and explain briefly for each bit.

(5 marks)

(ii) If status register contains \$24A8, what is the state of each condition code?

(1 marks)

- (b) Explain the operation of the following instructions and give a suitable for each example.
 - (i) MOVE.W D0, D2
 - (ii) MOVE.L (A0),D0

(4 marks)

- (c) Determine the value of CCR after executing the following instructions. Given D0=\$FFFFFFFF, D1 = \$0000807F and status register CCR is XNZVC = 11111. All instructions are independent.
 - (i) ADD.L #1,D0
 - (ii) SUB.B #\$7F,D1
 - (iii) MULS D0,D1
 - (iv) ROXL.B #2,D1
 - (v) MOVE.W D7,D3

(10 marks)

Q4 (a) Analyse the program below and determine the value of the following memory content.

CODE EQU \$1000 **DATA** EQU \$2000 **ORG CODE PROG** MOVE.W NUMBERS,D0 ADD.W NUMBERS+2,D0 ADD.W NUMBERS+4,D0 MOVE.W D0,SUM **ORG DATA NUMBERS** DC.W \$2222 DC.W \$3333 DC.W \$4444 DC.W 0 **SUM** DC.W 0 **END** \$2000 (i) (ii) \$2001 \$2002 (iii) \$2003 (iv) \$2004 (v) (vi) \$2005 \$2006 (vii) \$2007 (viii) \$2008 (viiii) (x) \$2009

(10 marks)

(b) Determine the value of D0 and D1 after the execution of each instruction.

MOVEQ #-1, D0 MOVEQ #4, D1 MORE ADDQ #2, D0 SUBQ #2, D1 BNE MORE

(10 marks)

Q5 (a) Analyze the program below and determine the contents of A0, D0, D1 and memory address of \$2000, \$2001, \$2002, \$2003 and \$2004 every time the program reaches the instruction **NOP**.

START	MOVEA.L	#\$2000,A0
	MOVE.L	#\$2045FF11,(A0)+
	MOVE.B	#\$08,(A0)+
	MOVE.B	-2(A0),D0
	MOVE.B	-4(A0),D1
	NOP	
	CMP.B	D1,D0
	BGT	LABEL_1
	SUB.B	D0,-3(A0)
	ROL.B	#3,D0
	BMI	LABEL_3
	ADDI.B	#2,-5(A0)
	BRA	LABEL_7
LABEL_1	BCHG.B	#2,-3(A0)
LABEL_3	ADD.B	-1(A0),D0
	BSET.B	#2,\$2000
LABEL_7	NOP	

	1 st NOP	2 nd NOP
A0	\$2005	
D0		
D1		
Mem(\$2000)		
Mem(\$2001)		
Mem(\$2002)		
Mem(\$2003)	11	
Mem(\$2004)		

(14 marks)

- (b) Explain briefly any **THREE** (3) of the following addressing modes in Motorola 68000 programming:
 - (i) Data register direct
 - (ii) Address register direct
 - (iii) Address register indirect
 - (iv) Absolute short addressing
 - (v) Immediate data

(6 marks)

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2014/2015

PROGRAMME: BNL

COURSE CODE: BNJ 30302

COURSE

 $: {\tt ELECTRONICS} \ {\tt TECHNOLOGY}$

AND MICROPROCESSING

Figure Q2(b)