

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2012/2013**

COURSE

: ELECTRICAL PRINCIPLES II

COURSE CODE : BNR 10303

PROGRAMME : 1 BND

EXAMINATION DATE : JUNE 2013

DURATION : 3 HOURS

INSTRUCTION : ANSWER FIVE (5) QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF TEN (17) PAGES

Q1	(a)	Given a sinusoid, $5\sin(4\pi - 60^{\circ})$, calculate: (i) phase, (ii) angular frequency, (iii) period, and (iv) frequency.
	(b)	Identify the phase angle between $i_1 = -4\sin(377t + 25^\circ)$ and $i_2 =$

- (b) Identify the phase angle between $i_1 = -4\sin(377t + 25^\circ)$ and $i_2 = 5\cos(377t 40^\circ)$. Does i_1 lead or lag i_2 ? (3 marks)
- (c) Show the steps to your solution to evaluate the following complex numbers:

$$\frac{10 + j5 + 3 \angle 40^{\circ}}{3 + j4} + 10 \angle 30^{\circ} + j5$$

(6 marks)

(3 marks)

(d) Determine the input impedance of the circuit in Figure Q1 (d) at $\omega = 10$ rad/s.

(8 marks)

Q2 (a) Use the superposition theorem to determine v_o in the circuit as shown in Figure Q2 (a).

(12 marks)

(b) Find I_o in the circuit of Figure Q2 (b) using the concept of source transformation.

(8 marks)

Q3 (a) For circuit in Figure Q3 (a), determine the maximum power delivered to the load Z_L .

(14 marks)

(b) Calculate the *effective value* of the current waveform in **Figure Q3** (b) and the *average* power delivered to a $12-\Omega$ resistor when the current runs through the resistor.

(6 marks)

Q4	(a)	If $V_{ab} = 400V$ in a balanced Y-connected three-phase generator,	identify the phase
		voltages, assuming the phase sequence is:	

- (i) abc
- (ii) acb

(5 marks)

(b) In a balanced three-phase wye-wye system, the source is an *abc*-sequence of voltages and $V_{an} = 220 \angle 20^{\circ} \text{ V rms}$. The line impedance per phase is $0.6 + \text{j} 1.2\Omega$, while the per phase impedance of the load is $10 + \text{j} 14\Omega$. Calculate the line currents and the load voltages.

(7 marks)

(c) In the balanced three-phase wye-delta system in Figure Q4 (c), calculate the line current I_L and the average power delivered to the load.

(8 marks)

O5 (a) Determine the real power absorbed by the load in Figure Q5 (a),

(14 marks)

- (b) Consider the delta-delta system shown in Figure Q5 (b). Take $Z_1 = 8+j6 \Omega$, $Z_2 = 4.2 j2.2 \Omega$, $Z_3 = 10 + j0 \Omega$.
 - (i) Find the phase current I_{AB} , I_{BC} , and I_{CA} .
 - (ii) Calculate line currents I_{aA} , I_{bB} , and I_{cC} .

(6 marks)

Q6 (a) For the coupled coils in Figure Q6 (a), show that

$$L_{eq} = L_1 + L_2 + 2M$$
 (3 marks)

(b) For the coupled coils in Figure Q6 (b), show that

$$L_{eq} = \frac{L_1 L_2 - M^2}{L_1 L_2 - 2M^2}$$
 (7 marks)

- (c) Consider the circuit in Figure Q6 (c).
 - (i) Determine the coupling coefficient.
 - (ii) Calculate the energy stored in the coupled inductors at time t = 1s if $v = 60cos(4t + 30^\circ)$ V.

(10 marks)

-END OF QUESTION-

SEMESTER/SESSION : II / 2012/2013

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND COURSE CODE : BNR 10

BNR 10303

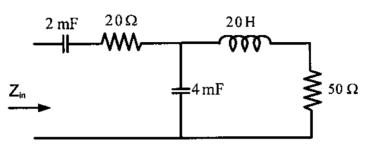


FIGURE Q1 (d)

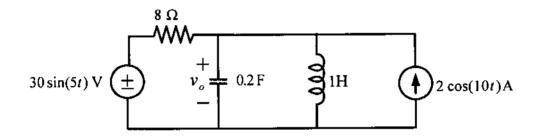


FIGURE Q2 (a)

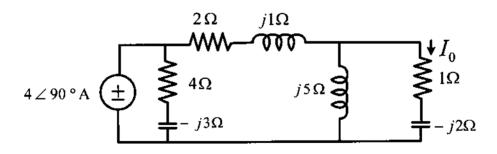


FIGURE Q2 (b)

SEMESTER/SESSION : II / 2012/2013

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND COURSE CODE : BNR 10303

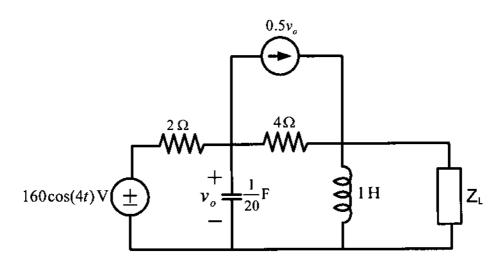


FIGURE Q3 (a)

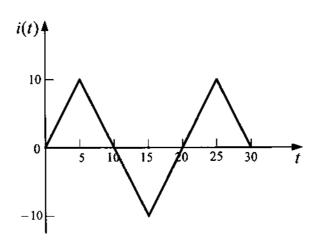


FIGURE 03 (b)

SEMESTER/SESSION : II / 2012/2013

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND COURSE CODE : BNR 10303

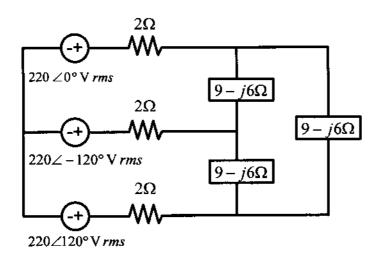


FIGURE 04 (c)

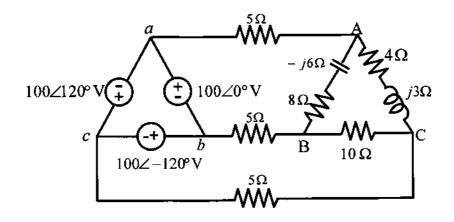


FIGURE Q5 (a)

SEMESTER/SESSION : II / 2012/2013

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND COURSE CODE : BNR 10303

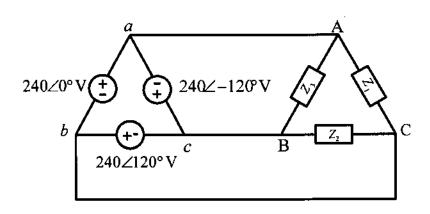
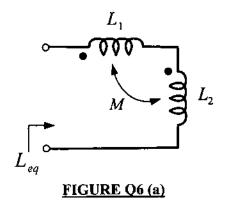


FIGURE Q5 (b)

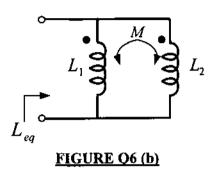


SEMESTER/SESSION : II / 2012/2013 COURSE NAME

: ELECTRICAL PRINCIPLES 11

PROGRAMME : I BND

COURSE CODE : BNR 10303



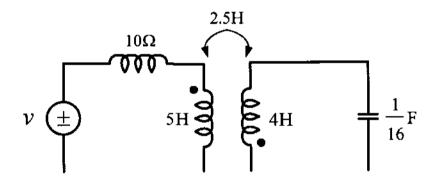


FIGURE Q6 (c)

SEMESTER/SESSION : II / 2012/2013

PROGRAMME

: 1 BND

COURSE NAME

: ELECTRICAL PRINCIPLES II

COURSE CODE :

BNR 10303

Chapter 1

A general expression for the sinusoid

Frequency: $f = \frac{1}{T}Hz$

Angular frequency: $\omega = 2\pi f$ Hz

Trigonometric identities

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

 $\sin(\omega t \pm 180^{\circ}) = -\sin \omega t$

 $\cos(\omega t \pm 180^{\circ}) = -\cos \omega t$

 $\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t$

 $\cos(\omega t \pm 90^{\circ}) = \mp \sin \omega t$

Mathematic operation of complex number

Addition: $z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$

Subtraction: $z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$

Multiplication: $z_1 z_2 = r_1 r_2 \angle \phi_1 + \phi_2$

Division: $\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \phi_1 - \phi_2$

Reciprocal: $\frac{1}{z} = \frac{1}{r} \angle -\phi$

Square root: $\sqrt{z} = \sqrt{r} \angle \phi/2$

Complex conjugate: $z' = x - jy = r \angle - \phi = re^{-j\phi}$

Euler's identity: $e^{\pm j\phi} = \cos \phi \pm j \sin \phi$

SEMESTER/SESSION : II / 2012/2013 PROGRAMME : 1 BND COURSE NAME : ELECTRICAL PRINCIPLES II COURSE CODE : BNR 10303

Summary of voltage-current relationship					
Element	Time domain	Frequency domain			
R	v = Ri	V = RI			
L	$v = L \frac{di}{dt}$	$V = j\omega LI$			
С	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C}$			

Impedances and admittances of passive elements				
Element	Impedance	Admittance		
R	Z = R	$Y = \frac{1}{R}$		
L	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$		
С	$Z = \frac{1}{j\omega C}$	$Y = j\omega C$		

Relationship between differential, integral operation in phasor listed as follow:

$$v(t) \to V = V \angle \phi$$

$$\frac{dv}{dt} \to j\omega V$$

$$\int v dt \to \frac{V}{j\omega}$$

SEMESTER/SESSION : II / 2012/2013

PROGRAMME

: 1 BND

COURSE NAME

: ELECTRICAL PRINCIPLES II

COURSE CODE : BNR 10303

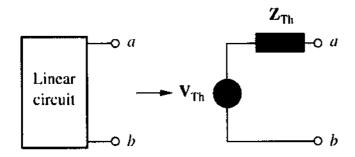
Chapter 2

Superposition Theorem

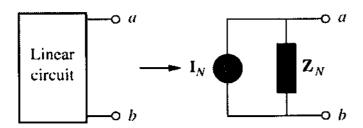
When a circuit has sources operating at different frequencies,

- The separate phasor circuit for each frequency must be solved independently,
- Thet otal response is the sum of time-domain responses of all the individual phasor circuits.

Thevenin and Norton Equivalent Circuits



Thevenin transform



Norton transform

SEMESTER/SESSION : II / 2012/2013

PROGRAMME

: 1 BND

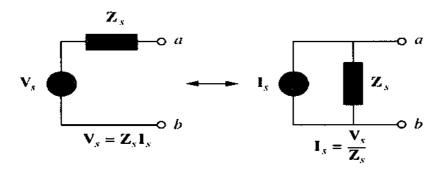
COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

Source Transformation



Chapter 3

Average Power: $P = \frac{1}{T} \int_{0}^{T} p(t) dt = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_v)$

Load Impedance: $Z_L = Z_{TH} = R_{TH} + j X_{TH}$ $Z_{TH}^{\bullet} = R_{TH} - jX_{TH}$

Maximum Average Power: $P_{max} = \frac{|V_{TH}|^2}{8 R_{TH}}$ If the load is purely real : $R_L = \sqrt{R_{TH}^2 + X_{TH}^2} = \left|Z_{TH}\right|$

Effective Current: $I_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2} dt} = I_{rms}$

The rms value of a sinusoid $i(t) = I_{m}cos(wt)$ is given by: $I_{ms}^{2} = \frac{I_{m}}{\sqrt{2}}$

The average power can be written in terms of the rms values:

$$I_{\text{eff}} = \frac{1}{2} V_{\text{m}} I_{\text{m}} \cos (\theta_{\text{v}} - \theta_{\text{i}}) = V_{\text{ms}} I_{\text{ms}} \cos (\theta_{\text{v}} - \theta_{\text{i}})$$

SEMESTER/SESSION

: II / 2012/2013

PROGRAMME

: 1 BND

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

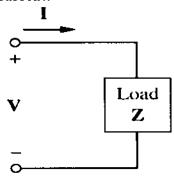
Apparent Power and Power Factor:

$$P = V_{mns} I_{mns} \cos(\theta_v - \theta_i) = S\cos(\theta_v - \theta_i)$$

Apparent Power, S

Power Factor, pf

Complex power S is the product of the voltage and the complex conjugate of the current:



$$V = V_m \angle \theta_v$$
 $I = I_m \angle \theta_i$

$$I = I_m \angle \theta_i$$

$$\frac{1}{2}V~I^{\bullet} = V_{rms}~I_{rms} \angle \theta_{v} - \theta_{i}$$

$$S = V_{rms} I_{rms} \cos(\theta_{v} - \theta_{i}) + j V_{rms} I_{rms} \sin(\theta_{v} - \theta_{i})$$

$$S = P + j Q$$

P: is the average power in watts delivered to a load and it is the only useful power.

Q: is the reactive power exchange between the source and the reactive part of the load. It is measured in VAR.

- Q = 0 for resistive loads (unity pf).
- Q < 0 for capacitive loads (leading pf).
- Q > 0 for inductive loads (lagging pf).

Power Absorbed:
$$P = I_{rms}^2 R = \frac{V_{rms}^2}{R}$$

SEMESTER/SESSION

: II / 2012/2013

3

PROGRAMME

: 1 BND

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

$$\textbf{Conservation of AC Power}: \ \overline{S} = \frac{1}{2} \ \overline{V} \ \overline{I_1^*} = \frac{1}{2} \ \overline{V} \ (\overline{I_1^*} + \overline{I_2^*}) = \frac{1}{2} \ \overline{V} \ \overline{I_1^*} + \frac{1}{2} \ \overline{V} \ \overline{I_2^*} = \overline{S_1} + \overline{S_2}$$

Power Factor Correction :
$$C = \frac{Q_e}{\omega V_{rms}^2} = \frac{P \left(\tan \theta_1 - \tan \theta_2 \right)}{\omega V_{rms}^2}$$

$$Q_c = Q_1 - Q_2$$
, $Q_1 = S_1 \sin \Theta_1 = P \tan \Theta_1$, $Q_2 = P \tan \Theta_2$

Chapter 4

The voltages can be expressed in phasor form as

$$V_{an} = 200 \angle 10^{\circ} V$$

$$V_{bn} = 200 \angle - 230^{\circ}V$$

$$V_{cn} = 200 \angle -110^{\circ} V$$

A balanced Y-Y system

$$V_L = \sqrt{3}V_p$$
, where

$$V_p = |V_{an}| = |V_{bn}| = |V_{cn}|$$

$$V_{i} = |V_{ab}| = |V_{bc}| = |V_{ca}|$$

A balanced Y-A system

$$I_L = \sqrt{3}I_p$$
 , where

$$I_L = \left| \mathbf{I}_a \right| = \left| \mathbf{I}_b \right| = \left| \mathbf{I}_c \right|$$

$$I_p = \left| \mathbf{I}_{AB} \right| = \left| \mathbf{I}_{BC} \right| = \left| \mathbf{I}_{CA} \right|$$

Power loss in a single-phase system: $P'_{loss} = 2R \frac{P_L^2}{V_L^2}$

Power loss in a three-phase system: $P_{loss}^{i} = R' \frac{P_L^2}{V_L^2}$

Unbalanced Three-Phase Systems:

$$I_a = \frac{V_{AN}}{Z_A}, I_b = \frac{V_{BN}}{Z_B}, I_c = \frac{V_{CN}}{Z_C},$$

$$\mathbf{I}_n = -(\mathbf{I}_a + \mathbf{I}_b + \mathbf{I}_c)$$

SEMESTER/SESSION : II / 2012/2013

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND COURSE CODE : BNR 10303

Summary of phase and line voltages/currents for balanced three-phase system

Connecti on	Phase voltages/currents	Line voltages/currents
Y-Y	$V_{an} = V_p \angle 0^\circ$ $V_{bn} = V_p \angle -120^\circ$ $V_{cn} = V_p \angle +120^\circ$ Same as line currents	$V_{ab} = \sqrt{3}V_{p} \angle 30^{\circ}$ $V_{bc} = V_{ab} \angle -120^{\circ}$ $V_{ca} = V_{ab} \angle +120^{\circ}$ $I_{a} = \frac{V_{an}}{Z_{y}}$ $I_{b} = I_{a} \angle -120^{\circ}$ $I_{c} = I_{a} \angle +120^{\circ}$
Υ-Δ	$V_{an} = V_{p} \angle 0^{\circ}$ $V_{bn} = V_{p} \angle -120^{\circ}$ $V_{cn} = V_{p} \angle +120^{\circ}$ $I_{AB} = \frac{V_{AB}}{Z_{\Delta}}$ $I_{BC} = \frac{V_{BC}}{Z_{\Delta}}$ $I_{CA} = \frac{V_{CA}}{Z_{\Delta}}$	$V_{ab} = V_{AB} = \sqrt{3}V_p \angle 30^{\circ}$ $V_{bc} = V_{BC} = V_{ab} \angle -120^{\circ}$ $V_{ca} = V_{CA} = V_{ab} \angle +120^{\circ}$ $I_a = I_{AB}\sqrt{3}\angle -30^{\circ}$ $I_b = I_a \angle -120^{\circ}$ $I_c = I_a \angle +120^{\circ}$
Δ-Δ	$V_{ah} = V_p \angle 0^{\circ}$ $V_{bc} = V_p \angle -120^{\circ}$ $V_{ca} = V_p \angle +120^{\circ}$ $I_{AB} = \frac{V_{ah}}{Z_{\Delta}}$ $I_{BC} = \frac{V_{bc}}{Z_{\Delta}}$ $I_{CA} = \frac{V_{ca}}{Z_{\Delta}}$	Same as phase voltages $I_a = I_{AB} \sqrt{3} \angle -30^{\circ}$ $I_b = I_o \angle -120^{\circ}$ $I_c = I_a \angle +120^{\circ}$

SEMESTER/SESSION

COURSE NAME

: II / 2012/2013

PROGRAMME

: 1 BND

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

Δ-Υ

$$V_{ab} = V_p \angle 0^{\circ}$$

$$V_{bc} = V_p \angle -120^{\circ}$$

$$V_{co} = V_p \angle + 120^\circ$$

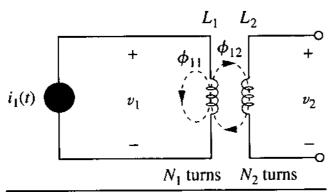
Same as line currents

$$I_a = \frac{V_p \angle - 30^{\circ}}{\sqrt{3}Z_Y}$$

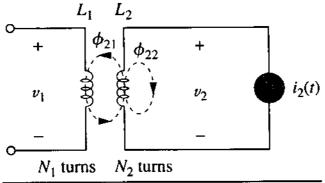
$$I_b = I_a \angle -120^\circ$$

$$I_c = I_a \angle + 120^\circ$$

Chapter 5



The open-circuit mutual voltage across coil 2: $v_2 = M_{21} \frac{di_1}{dt}$



The open-circuit mutual voltage across coil 1: $v_1 = M_{12} \frac{di_2}{dt}$

BNR 10303

FINAL EXAMINATION

SEMESTER/SESSION : II / 2012/2013

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND COURSE CODE : BNR 10303

Series-Aiding Connection: $L = L_1 + L_2 + 2M$

Series-Opposing Connection $L = L_1 + L_2 - 2M$

Coefficient of Coupling k: $M = k\sqrt{L_1L_2}$

Instantaneous Energy Stored: $w = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 \pm MI_1I_2$