

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

: ANALOG ELECTRONICS

COURSE CODE

: BEJ 10503/BEL 10203

PROGRAMME CODE

: BEJ/BEV

EXAMINATION DATE

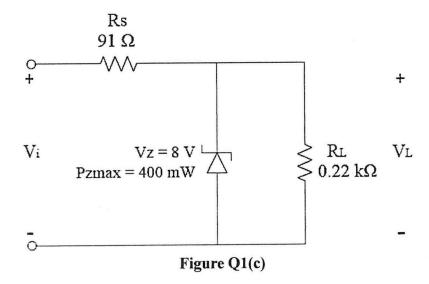
: DECEMBER 2019/JANUARY 2020

DURATION

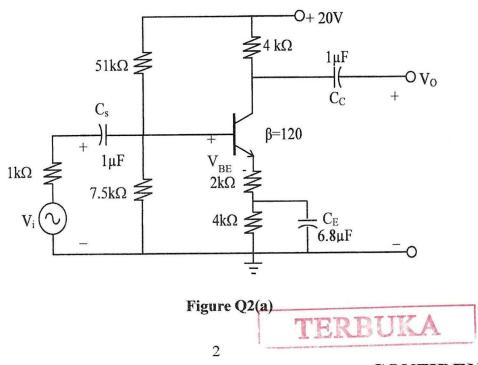
: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS


THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

Q1 (a) In your own words, define an intrinsic material.


(1 mark)

- (b) Describe the difference between majority and minority carriers in an n-type material. (2 marks)
- (c) Determine the range of input voltage, V_i that will maintain the load voltage, V_L at 8 V and not exceed the maximum power rating of the Zener diode in **Figure Q1(c)**. Show your calculations to support your answers.

(12 marks)

Q2 Figure Q2(a) shows a BJT amplifier with $\beta = 120$ and $V_{BE} = 0.7$ V.

CONFIDENTIAL

BEJ 10503/BEL10203

Calculate current, I_B , I_C and I_E and output voltage, V_{CE} for the circuit using (a) (i) exact analysis.

(10 marks)

Draw the midband AC equivalent circuit using r_e model. (ii)

(3 marks)

Determine the input impedance, Zi, output impedance, Zo, voltage gain, A_V and (iii) current gain, A_i for the obtained answer in part **Q2(a)(ii)**.

(10 marks)

State the drawback of r_e model. (b)

(2 marks)

Based on the amplifier circuit shown in Figure Q3(a), Q3

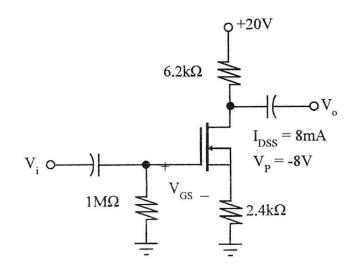


Figure Q3(a)

name the transistor and its configuration. (i)

(2 marks)

plot the transfer characteristics of the transistor. (ii)

(3 marks)

(b) Figure Q3(b) shows an FET amplifier circuit.

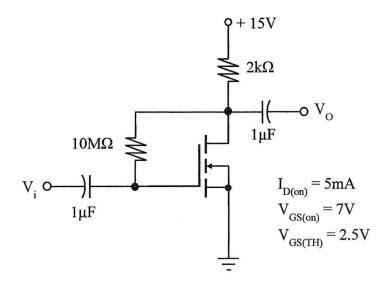
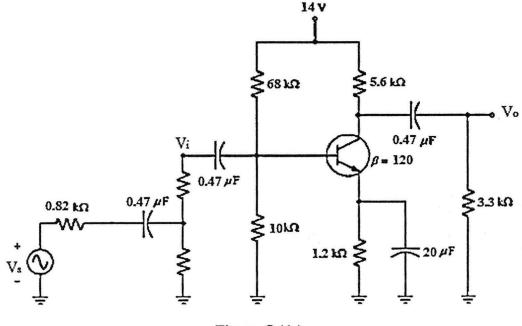


Figure Q3(b)


(i) Determine the I_{DQ} , V_{GSQ} and V_{DSQ} . Show all the calculations.

(8 marks)

- (ii) Draw the small-signal equivalent circuit of the circuit. Given $r_d = 50 \text{k}\Omega$. (2 marks)
- (iii) Calculate the transconductance, g_m . (1 mark)
- (iv) Calculate the input impedance, Z_{in} and the output impedance, Z_{out} . (for both with and without r_d)

 (7 marks)
- (v) Calculate the voltage gain, A_V . (for both with and without r_d) (2 marks)

Q4 (a) **Figure Q4(a)** is an amplifier circuit that only amplifies the signals of specified frequencies. Assume that the BJT transistor has an infinite value of AC collector resistance, r_o (or r_c) with $r_e = 28.48 \,\Omega$ and $A_v = -72.91$,

- Figure Q4(a)
- (i) determine the low cut-off frequencies f_{LC} , f_{LS} and f_{LE} .

(12 marks)

(ii) state the dominant low cut-off frequency, f_L .

(1 mark)

(iii) sketch the frequency response.

(3 marks)

- (b) Power amplifier is the part of audio electronics. A power amplifier circuit is used to drive the loads like speakers with minimum output impedance.
 - (i) Draw the basic block diagram of a practical power amplifier.

(4 marks)

(ii) Differentiate between voltage amplifier and power amplifier.

(2 marks)

(iii) Determine the input power, output power and circuit efficiency of a class B amplifier providing a 20 V peak signal to a 16 Ω load and a power supply of Vcc = 30 V.

(10 marks)

CONFIDENTIAL

BEJ 10503/BEL10203

(iv) A crossover distortion occurs in Class B power amplifier when the signal changes or "crosses-over" from one transistor to the other at the zero voltage point. Suggest the modifications of the Class B power amplifier circuit to overcome crossover distortion.

(3 marks)

- END OF QUESTIONS -

