

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

ELECTRIC CIRCUIT II

COURSE CODE

BEJ 10403

PROGRAMME CODE

BEJ

:

:

EXAMINATION DATE

DECEMBER 2019/JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. SHOW ALL CALCULATIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

Q1 (a) Explain the method to store energy in capacitor.

(2 marks)

- (b) The voltage across a 5 μ F capacitor is shown in **Figure Q1(b)**.
 - (i) Draw the current waveform through the capacitor.

(6 marks)

(ii) Calculate the energy is stored in the capacitor at t = 4 ms.

(2 marks)

Figure Q1 (b)

- (c) The circuit in **Figure Q1(c)** has reached steady state at $t = 0^-$ (switch at position a). At t = 0 s, the switch is moved to position b.
 - (i) Determine the current across inductor, i(t) for t > 0 s.

(6 marks)

(ii) Sketch the complete current response, i(t) from initial value to final value. (4 marks)

- Q2 (a) The switch in Figure Q2(a) was opened for a long time but closed at t = 0 s. Determine the following:
 - (i) $i(0^+)$ and $v(0^+)$ (3 marks)
 - (ii) $\frac{di(0^+)}{dt}$ and $\frac{dv(0^+)}{dt}$ (4 marks)

Figure Q2(a)

- (b) The switch in **Figure Q2(b)** has been opened for a long time, and it is closed at t = 0 s.
 - (i) Determine the roots of the characteristic equation and the type of damping response.

(5 marks)

(ii) Find current response, i(t) for t > 0s.

(8 marks)

Figure Q2(b) TERBUKA

- Q3(a) Source transformation methods are used for circuit simplification to modify the complex circuits by transforming independent current sources into independent voltage sources and vice-versa.
 - Illustrate the conversion of voltage source into current source using the source (i) transformation method.

(3 marks)

(ii) In Figure Q3(a), given that the voltage across the resistor 10 Ω . $V_o = 5.519 \angle - 28^{\circ} \text{ V}$. Find the impedance, Z.

(8 marks)

Figure Q3(a)

- (b) For the circuit in Figure Q3(b),
 - (i) draw the Thevenin equivalent circuit at terminal a-b.

(1 mark)

(ii) determine the Thevenin Voltage, V_{TH} .

(4 marks)

(iii) determine the Thevenin Impedance, Z_{TH} .

(4 marks)

- Q4 (a) Power is the most important quantity in electric utilities, electronic, and communication systems. Such systems involve transmission of power from one point to another. Given a circuit shown in **Figure Q4(a)**,
 - (i) describe the technique to achieve maximum power transfer.

(2 marks)

(ii) determine the impedance R_L for maximum average power transfer.

(4 marks)

(iii) find the value of the maximum average power absorbed by the load.

(4 marks)

Figure Q4(a)

- (b) A small industrial plant with a supply of 1000 V at 60 Hz has a 20 kVA inductive load due to a bank of induction motors. The induction motors have a lagging power factor, *pf* of 0.7.
 - (i) Determine the capacitive element, X_C required to raise the power factor, pf to 0.95.

(5 marks)

(ii) Based on part $\mathbf{Q4(b)(i)}$, compare the levels of current drawn from the supply at pf = 0.95 and pf = 0.7.

(3 marks)

(iii) Sketch the power triangle.

(2 marks)

Q5 (a) Differentiate between one port network and two port network by defining and drawing those two networks respectively.

(4 marks)

(b) For **Figure Q5(b)**, obtain the impedance parameter of the circuit.

(8 marks)

(c) By using Figure Q5(c), calculate the admittance parameter of the circuit.

(8 marks)

~END OF QUESTIONS~

TERBUKA

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/2019/2020

PROGRAMME CODE : BEJ

COURSE NAME

: ELECTRIC CIRCUIT II

COURSE CODE

: BEJ 10403

APPENDIX A

TRIGONOMETRIC EQUATIONS

$$\sin(x) = -\sin(x)$$

$$cos(-x) = cos(x)$$

$$\tan(-x) = -\tan(x)$$

$$\sec x = \frac{1}{\cos x}, \qquad \csc x = \frac{1}{\sin x}$$

$$\tan x = \frac{\sin x}{\cos x}, \qquad \cot x = \frac{1}{\tan x}$$

$$\sin 2x + \cos 2x = 1$$

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos 2x - \sin 2x$$

$$\cos(2x) = 2\cos 2x - 1 = 1 - 2\sin 2x$$

$$\sin(x \pm 90^\circ) = \pm \cos x$$

$$cos(x \pm 90^{\circ}) = \mp \sin x$$

$$sin(x \pm 180^{\circ}) = \mp sin$$

$$cos(x \pm 180^{\circ}) = \mp \cos x$$

$$\cos^2 x + \sin^2 x = 1$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$2\sin x \sin y = \cos(x - y) - \cos(x + y)$$

$$2\sin x\cos y = \sin(x+y) + \sin(x-y)$$

$$2\cos x\cos y = \cos(x+y) + \cos(x-y)$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

TERBUKA