

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

WIRELESS SENSOR AND MOBILE

AD HOC NETWORKS

COURSE CODE

BEB 42003

PROGRAMME

BEJ

EXAMINATION DATE

DECEMBER 2018/JANUARY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER TWO (2) QUESTIONS

FROM SECTION A AND TWO (2)
OUESTIONS FROM SECTION B

ONLY

THIS PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

ASSOC, PROF. DR. 10VA BIN ABBULLAR
Lecturer

Lecturer

Lecturer

Department of Commission Engineering Faculty of Electrical & Essential Engineering University Tun Hussein Ours Malaysia

SECTION A: ANSWER TWO(2) QUESTIONS ONLY

- Q1 Clustering is the most preferred networking technique to manage large number of sensor nodes in a monitoring environment.
 - (a) (i) Describe **THREE** (3) advantages of clustering techniques.

(6 marks)

(ii) Differentiate between cluster head and ordinary node in a clustering networking environment.

(4 marks)

(b) Consider a system of wireless sensor network operating as clusters utilizing LEACH protocol. Describe in detail the operation of LEACH protocol.

(15 marks)

- Q2 Consider the IEEE 802.15.4 protocol, where its frame sequence is shown in **Figure Q2**. The following assumptions are made: that is no collision, no packet lost, sending node has always sufficient packet to send, BER is zero, non-beacon enabled, only one sender and one receiver operating within a short distance.
 - (a) Describe the following term as regards to the IEEE802.15.4 protocol.
 - (i) Throughput

(3 marks)

(ii) Bandwidth efficiency

(3 marks)

(iii) Delay

(3 marks)

(b) Show the mathematical expression for the throughput of the IEEE802.15.4 protocol in terms of overall delay. Define all the terms used.

(4 marks)

(c) Analyze the throughput of the IEEE802.15.4 for the operating frequencies of 868 MHz and 2.4 GHz with the following parameters: payload of 100 bytes with the length of MAC address as 32 bit. You may need all the information from **Table Q2(c)(i)**, **Table Q2(c)(ii)** and **Table Q2(c)(iii)**. Assume that no acknowledgement is included.

(12 marks)

- Q3 Power consumption is the main concern in the sensor node and thus the whole setup of wireless sensor network.
 - (a) State **FIVE** (5) sources of power consumption in the sensor node

(5 marks)

(b) Determine the efficiency criteria of switching between operating modes of the sensor so as to reduce energy consumption.

(5 marks)

(c) Consider a wireless sensor network shown in **Figure Q3.** The sources of energy consumption come from the ordinary nodes and cluster heads activities given below.

Types of Node	Sources of Energy Consumption
Ordinary Node	Sensing and Transmitting
Cluster Head	Receiving and Transmitting

Assume the free space fading as the propagation model with exponent 2, the number of sensing bit is 10 and the weighting factor for transmitting and receiving only is $\{h_2\} = \{1.4\}$. Derive the total energy model for the cluster C2 only in terms of the variables concerned. The variables are shown in **Table Q3(c)**.

(15 marks)

SECTION B: ANSWER TWO(2) QUESTIONS ONLY

- Q4 Ad Hoc On Demand Routing (AODV) is well known protocol for mobile ad hoc network consisting of path discovery, forward path setup, reverse path setup, path table management and path maintenance.
 - (a) Explain the operation of path discovery for AODV protocol with regard to source node, intermediate node and destination node. Suitable flowchart may be used to describe the operation.

(16 marks)

(b) Apply the protocol to the following events and explain the outcome.

3

(i) the destination node moves.

(3 marks)

(ii) a node need to determine its neighbour.

(3 marks)

(iii) link failures occur

(3 marks)

CONFIDENTIAL

TERBUKA

- Q5 Consider the IEEE 802.11 Wireless Local Area Network (WLAN) protocol, which is the most viable MAC protocol for the mobile ad hoc network.
 - (a) Define the Theoretical Maximum Throughput (TMT) as applied to IEEE 802.11 and state the assumptions for it to be true.

(9 marks)

(b) Consider the IEEE 802.11, with HR-DSSS MAC schemes operating at 5.5 Mbps and 11 Mbps. Evaluate the performance of CSMA/CA and RTS/CTS for a range of MSDU given as 300 bytes and 1500 bytes. The evaluations are to be done by calculating the total delay and TMT. For all the calculations, **Table Q5(b)(i)** and **Table Q5(b)(ii)** are required.

(16 marks)

- Q6 Bandwidth is one of the important factors when ensuring the connectivity among the neighboring nodes in mobile ad hoc networks.
 - (a) Explain the term residual capacity and show its relation to maximum achievable channel capacity.

(8 marks)

(b) Consider the network as shown in **Figure Q6**. The data can flow through the node if the node offered enough bandwidth. Estimate the bandwidth available ($B_{available}(I)$) at node I and the bandwidth consumed at node I due to flow j ($B_{consumed}(I,j)$).

(17 marks)

- END OF QUESTIONS -

4

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: WIRELESS SENSOR AND

PROGRAMME CODE: BEJ

COURSE CODE : BEB42003

MOBILE AD HOC NETWORKS

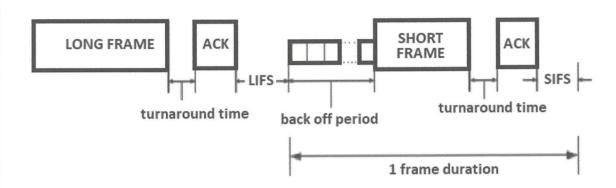


Figure Q2

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

PROGRAMME CODE: BEJ

COURSE NAME

: WIRELESS SENSOR AND

COURSE CODE

: BEB42003

MOBILE AD HOC NETWORKS

Table Q2(c)(i)

MODULATION PARAMETERS OF 802.15.4

FREQUENCY	SYMBOL RATE	MODULATION	BIT RATE
BAND	(baud/s)		(kbps)
868.0 – 868.6 MHz	20000	BPSK	20
902 – 928.0 MHz	40000	BPSK	40
2.4 – 2.4835 GHz	62500	16-th ary Orth	250

Table Q2(c)(ii)

VALUES FOR PARAMETERS a AND b

#address		868 Mhz		915 MHz		2.4 GHz	
bits		a	b	a	Ъ	a	b
0 bit	ACK	0.0004	0.0149	0.0002	0.00745	0.000032	0.002656
	NO	0.0004	0.0099	0.0002	0.00495	0.000032	0.002112
	ACK						
16 bits	ACK	0.0004	0.0181	0.0002	0.00905	0.000032	0.002912
	NO	0.0004	0.0131	0.0002	0.00655	0.000032	0.002368
	ACK						
64 bits	ACK	0.0004	0.0229	0.0002	0.01145	0.000032	0.003296
	NO	0.0004	0.0179	0.0002	0.00895	0.000032	0.002752
	ACK						

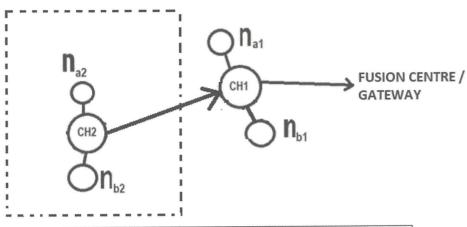
Table Q2(c)(iii) MINIMUM AND MAXIMUM DELAY

#address		868 Mhz		915 I	VIHz	2.4 GHz	
bits		Maximum	Maximum	Maximum	Maximum	Maximum	Maximum
		bitrate	efficiency	bitrate	efficiency	bitrate	efficiency
		(bps)	(%)	(bps)	(%)	(bps)	(%)
0 bit	ACK	0.0004	0.0149	0.0002	0.00745	0.000032	0.002656
	NO ACK	0.0004	0.0099	0.0002	0.00495	0.000032	0.002112
16 bits	ACK	0.0004	0.0181	0.0002	0.00905	0.000032	0.002912
	NO ACK	0.0004	0.0131	0.0002	0.00655	0.000032	0.002368
64 bits	ACK	0.0004	0.0229	0.0002	0.01145	0.000032	0.003296
	NO ACK	0.0004	0.0179	0.0002	0.00895	0.000032	0.002752

6

CONFIDENTIAL

Department of Comments - . Engineering Faculty of Electrical & Lacatasaic Engineering University Tun Hussein Out Malaysia


FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: WIRELESS SENSOR AND MOBILE AD HOC NETWORKS PROGRAMME CODE: BEJ

COURSE CODE : BEB42003

CH1 = parent cluster head CH2 = child cluster head $oldsymbol{eta}_{a1}, oldsymbol{eta}_{b1}$ ordinary nodes connected to CH1 n_{a2}, n_{b2} ordinary nodes connected to CH2

Figure Q3

7

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

PROGRAMME CODE: BEJ

COURSE NAME

: WIRELESS SENSOR AND MOBILE AD HOC NETWORKS

COURSE CODE : BEB42003

Table Q3(c)

SYMBOL	DESCRIPTION DESCRIPTION	VALUE
N_{cyc}	Number of clock cycles per task	0.97×10^6 .
C_{avg}	Average capacitance switch per cycle	22pF
V_{sup}	Supply voltage to sensor	2.7 V
f	Sensor frequency	191.42 MHz
n_p	Constant depending on the processor	21.26
n	Path loss exponent	2 or 4
I_o	Leakage current	1.196 mA
V_t	Thermal voltage	0.2 V
b	Transmit packet size	2 kB
E_{elec}	Energy dissipation: electronics	50 nJ/bit
E_{amp}	Energy dissipation: power amplifier	100 pJ/bit/m ²
T_{tranON}	Time duration: sleep -> idle	2450 μs
$T_{tranOFF}$	Time duration: idle -> sleep	250 μs
I_A	Current: wakeup mode	8 mA
I_S	Current: sleeping mode	1 μΑ
T_A	Active Time	1 ms
T_S	Sleeping Time	299 ms
T_{tr}	Time between consecutive packets	300 ms
T_{sens}	Time duration: sensor node sensing	0.5 mS
Isens	Current: sensing activity	25 mA
Iwrite	Current: flash writing 1 byte data	18.4 mA
I_{read}	Current: flash reading 1 byte data	6.2 mA
T_{write}	Time duration: flash writing	12.9 mS
T_{read}	Time duration: flash reading	565 μs
Eactu	Energy dissipation: actuation	0.02 mJ
h_{I}	CH weighting factor, for processing	1.2
h_2	CH weighting factor, for transmission and	1.4
	receiving.	1.6
h_3	CH weighting factor, for sensing	1.6
h_4	CH weighting factor, for sensor logging	1.8

8

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

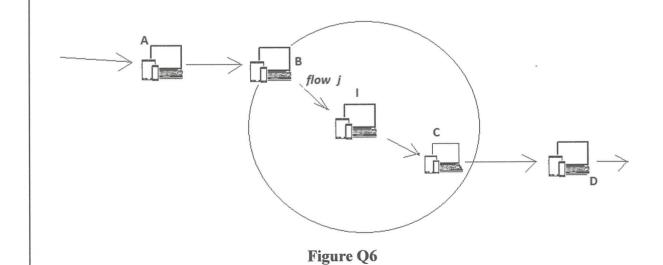
: WIRELESS SENSOR AND

MOBILE AD HOC NETWORKS

PROGRAMME CODE: BEJ

COURSE CODE : BEB42003

Table Q5(b)(i)


Delay components for different MAC schemes and spread spectrum techniques

Scheme	Constant and varying delay components (10 ⁻⁶ s)						
	T_{DIFS}	T_{SIFS}	T_{BO}	T_{RTS}	T_{CTS}	T_{ACK}	T_{DATA}
CSMA/CA							
HR-DSSS-5.5	50	10	310	NA	NA	304	192+8×(34+MSDU)/5.5
HR-DSSS-11	50	10	310	NA	NA	304	192+8×(34+MSDU)/11
RTS/CTS							
HR-DSSS-5.5	50	10× 3	310	352	304	304	192+8×(34+MSDU)/5.5
HR-DSSS-11	50	10× 3	310	352	304	304	192+8×(34+MSDU)/11

Table Q5(b)(ii)

TMT parameters for MAC schemes and spread spectrum

1		1 1			
Scheme	Data Rate	a	b		
CSMA/CA					
HR-DSSS	5.5 Mbps	1.45455	915.45		
HR-DSSS	11 Mbps	0.72727	890.73		
RTS/CTS					
HR-DSSS	5.5 Mbps	1.4545	1591.45		
HR-DSSS	11 Mbps	0.72727	1566.73		

9

CONFIDENTIAL

University Tun Hussein Oun Malaysie