

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2018/2019**

COURSE NAME : TRANSFORM CIRCUIT ANALYSIS

COURSE CODE : BEF 22803

PROGRAMME CODE : BEV

EXAMINATION DATE : DECEMBER 2018/ JANUARY 2019

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTIONS PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

- Q1 (a) Determine the Laplace transformation of the following function by referring to the Laplace Transform table provided in **Table Q1(a)**.
 - (i) $a(t) = 3e^{7t}u(t)$

(2 marks)

(ii) $b(t) = 5\cos 3tu(t)$

(2 marks)

(iii) c(t) = 8u(t-4) - 8u(t-8)

(4 marks)

(iv) $d(t) = \cos 9(t-4)u(t-4)$

(4 marks)

(b) The input circuit of the circuit in **Figure Q1(b)** is $i_s(t) = 5e^{-t}u(t)mA$ with $R = 10 \text{ k}\Omega$ and $C = 50 \text{ }\mu\text{F}$. Draw the s-domain equivalent circuit and determine the output voltage in both s domain and time domain.

(9 marks)

(c) If the value of R and C in Figure Q1(b) are changed to $R = 50 \text{ k}\Omega$ and $C = 10 \text{ }\mu\text{F}$, determine the new output voltage in both s domain and time domain.

(4 marks)

- Q2 (a) Figure Q2(a) shows the time domain and frequency domain of RC circuit.
 - (i) Express the transfer function V_o/V_s for frequency domain RC circuit.

(5 Marks)

- (ii) Sketch the amplitude and the phase response of the results in **Q2(a)(i)**.

 (4 Marks)
- (b) A new system with a transfer function is cascaded to the existing system to get the new transfer function as below:

$$H_{new}(s) = \frac{500s}{(s+5)(s+10)}$$

TERRUKA

CONFIDENTIAL

BEF 22803

(i) Analyse its characteristics by illustrating its amplitude responses in Bode plot.

(10 Marks)

(ii) Analyse the phase responses in Bode plot.

(6 Marks)

Q3 (a) Obtain the Fourier series expansion of the rectified sine wave shown in Figure Q3(a).

(10 marks)

(b) Obtain the Fourier Series of the waveform shown in Figure Q3(b) by using exponential form of Fourier Series.

(10 marks)

(c) As an electrical engineer, define the definition of the Fourier series and list 2 (TWO) advantages of using Fourier Series in circuit analysis.

(5 marks)

Q4 (a) Determine the response $i_o(t)$ in the circuit shown in Figure Q4(a) if the input voltage has the Fourier series expansion

$$v(t) = 1 + \sum_{n=1}^{\infty} \frac{2^n}{1+n^2} (\cos nt - n \sin nt)$$

(15 marks)

(b) From Figure Q4(a), calculate the total average power dissipated at 4Ω resistor (10 marks)

-END OF QUESTIONS-

SEMESTER/SESSION: SEMESTER I/ SESSION 2018/2019 COURSE NAME : TRANSFORM CIRCUIT ANALYSIS

PROGRAMME CODE: BEV

COURSE CODE: BEF 22803

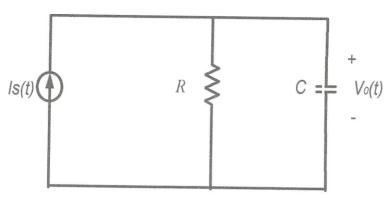


Figure Q1(b)

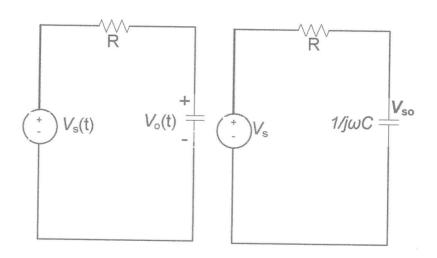


Figure Q2(a)

SEMESTER/SESSION: SEMESTER I/ SESSION 2018/2019 COURSE NAME : TRANSFORM CIRCUIT ANALYSIS PROGRAMME CODE: BEV COURSE CODE: BEF 22803

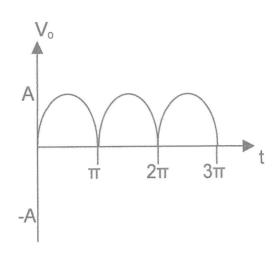


Figure Q3(a)

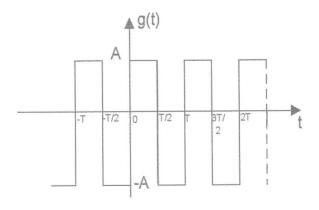


Figure Q3(b)

SEMESTER/SESSION : SEMESTER I/ SESSION 2018/2019 PROGRAMME CODE : BEV COURSE NAME : TRANSFORM CIRCUIT ANALYSIS COURSE CODE : BEF 22803

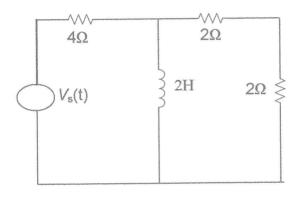


Figure Q4(a)

SEMESTER/SESSION : SEMESTER I/ SESSION 2018/2019 PROGRAMME CODE : BEV COURSE NAME : TRANSFORM CIRCUIT ANALYSIS COURSE CODE : BEF 22803

TABLE: Laplace Transform Table

	f(t)	F(s)	
1	$\delta(t)$	I	O Colores
2	1	$\frac{1}{s}$	$s \ge 0$
3	ť	$\frac{s}{\frac{1}{s^2}}$	s > 0
4	t ⁿ , n=1,2,	$\frac{n!}{s^{n+1}}$	$s \ge 0$
5	e ^{at}	$\frac{1}{s-a}$	s > a
6	te ^{-at}	$\frac{1}{(s-a)^2}$ $\frac{1}{(s-a)^{n+1}}$	
7	$t^n e^{-at}$	7	
	n!	$(s-a)^{n+1}$	And the second s
8	sin at	$\frac{a}{s^2 + a^2}$	$s \ge 0$
9	cos at	$\frac{s}{s^2 + a^2}$	$s \ge 0$
10	e ^{at} sin bt	$\frac{b}{(s-a)^2+b^2}$	$s \ge a$
11	e ^{at} cos bt	$\frac{s-a}{(s-a)^2+b^2}$	s > a
12	y'(t)	$sY(s) - y(0)$, and $Y(s) = L\{y(t)\}$	
13	y''(t)	$s^2Y(s) - sy(0) - y'(0)$	
14	$\frac{y''(t)}{e^{at}f(t)}$	F(s-a)	
15	$t^{n} f(t), n=1,2,$	$(-1)^n \frac{d^n}{ds^n} F(s)$	
16	f(t)u(t-a)	$e^{-as}L\{f(t+a)\}$	

