

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

: ROBOTIC SYSTEMS

COURSE CODE

: BEH 41703

PROGRAMME CODE : BEJ

EXAMINATION DATE : DECEMBER 2018 / JANUARY 2019

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

CONFIDENTIAL

BEH 41703

- Q1 Consider the robot shown in Figure Q1 with two rotary joints and a prismatic joint.
 - (a) Assign coordinate frames to the robot arm using the D-H algorithm.

(5 marks)

(b) Obtain a table of the D-H parameters of the robot.

(5 marks)

(c) Construct the transformation matrices H_0^1 , H_1^2 and H_2^3 by using the D-H matrix as given below:

$$H_{i-1}^i = \begin{bmatrix} C\theta_i & -C\alpha_i S\theta_i & S\alpha_i S\theta_i & a_i C\theta_i \\ S\theta_i & C\alpha_i C\theta_i & -S\alpha_i C\theta_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(5 marks)

(d) Produce the forward kinematics matric H_0^3 .

(5 marks)

- Q2 (a) Define the differences between forward kinematics with inverse kinematics (4 marks)
 - (b) Figure Q2 shows a spherical arm with two rotary joins and a prismatic join. The seven trigonometric equations and their solution are given in **Table Q2**. Analyse the inverse position (joint angles) of θ_1 and d_3 by using the D-H matrix as given below:

$$H_0^3 = \begin{bmatrix} -S\theta_1 & C\theta_1C\theta_2 & C\theta_1S\theta_2 & d_3C\theta_1S\theta_2 + d_2S\theta_1 \\ C\theta_1 & S\theta_1C\theta_2 & S\theta_1S\theta_2 & d_3S\theta_1S\theta_2 - d_2C\theta_1 \\ 0 & -S\theta_2 & -C\theta_2 & d_1 - d_3C\theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(16 marks)

Q3 Figure Q3 shows a three-link RRR spatial manipulator with assigned frames and link parameters as tabulated in following Table Q3.

Table Q3 Three-link RRR spatial manipulator link parameters

	INTERNATION INCOME.	1		
i	α_{i}	$a_{\rm i}$	$d_{\rm i}$	$\theta_{\rm i}$
1	0	0	0	θ_1
2	-90°	0	0	θ_2
3	0	a_2	d_3	θ_3

(a) Solve the transformation matrix of H_0^3 .

$$H_{i-1}^{i} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(6 marks)

- (b) Calculate the Jacobian of the linear velocities of the RRR manipulator. (8 marks)
- (c) Briefly discuss about the problem of singularities. (2 marks)
- (d) Analyze the singularities of the two simple two-link arm as shown in **Figure** Q3(d). (4 marks)
- Q4 The second joint of Stanford arm manipulator is required to move from an initial position of 20 degrees to a final position of 68 degrees in 4 seconds. Assume that the joint starts and finishes at zero velocity.
 - (a) Design the cubic polynomial that connects initial joint-angle position with desired final position.

 (6 marks)

Find the joint velocity and acceleration along the path.

- (b) Find the joint velocity and acceleration along the path. (2 marks)
- (c) Calculate the position, velocity and acceleration of this joint at intervals of 1 second and sketch their plots against time.

 (12 marks)

- Q5 Consider the point masses m_1 and m_2 at the distal end of links of the θ -r robot manipulator with a rotary joint and a prismatic join shown in **Figure Q5**.
 - (a) Identify the Cartesian coordinates of the point masses m_1 and m_2 .

(2 marks)

(b) Calculate the velocities of the point masses m_1 and m_2 .

(3 marks)

(c) Analyze the total potential energy of the manipulator.

(6 marks)

(d) Find the Lagrangian function of the θ -r robot manipulator by using $L = K(q, \dot{q}) - P(q)$.

(2 marks)

(e) Derive the differential equations of motion of the θ -r robot manipulator by applying the following function:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q_1} = \tau_1$$

where

 $K(q, \dot{q})$ is the total kinetic energy

P(q) is the total potential energy store in the system

 τ_1 is the external torque/force

(7 marks)

-END OF QUESTION-

SEMESTER/SESSION COURSE

: SEM I / 2018/2019

: ROBOTIC SYSTEMS

PROGRAMME COURSE CODE : BEJ

: BEH41703

FIGURE Q1

SEMESTER/SESSION : SEM I / 2018/2019

COURSE

: SEM I / 2018/2019 PROGRAMME : BEJ : ROBOTIC SYSTEMS COURSE CODE : BEH41

: BEH41703

TABLE Q2

T (()	Calution(a)		
Equation(s)			
$\sin \theta = a$	$\theta = Atan2\left(a, \pm\sqrt{1-a^2}\right)$		
$\cos \theta = b$	$\theta = Atan2\left(\pm\sqrt{1-b^2},b\right)$		
$\sin \theta = a$	$\theta = Atan2(a,b)$		
$\cos \theta = b$			
$a\cos\theta - b\sin\theta = 0$	$\theta^{(1)} = Atan2(a, b)$		
	$\theta^{(2)} = Atan2(-a, -b) = \pi + \theta^{(1)}$		
$a\cos\theta + b\sin\theta = c$	$\theta^{(1)} = Atan2\left(c, \sqrt{a^2 + b^2 - c^2}\right) - Atan2(a, b)$		
	$\theta^{(2)} = Atan2\left(c, -\sqrt{a^2 + b^2 - c^2}\right) - Atan2(a, b)$		
$a\cos\theta - b\sin\theta = c$	$\theta = Atan2(ad - bc, ac + bd)$		
$a\sin\theta + b\cos\theta = d$			
$sin\alpha sin\beta = a$	$\alpha^{(1)} = Atan2(a, b)$		
$ cos\alpha sin\beta = b cos\beta = c $	$\beta^{(1)} = Atan2\left(\sqrt{a^2 + b^2}, c\right)$		
	$\alpha^{(2)} = Atan2(-a, -b) = \pi + \alpha^{(1)}$		
	$\beta^{(2)} = Atan2\left(-\sqrt{a^2 - b^2}, c\right)$		

SEMESTER/SESSION

COURSE

: SEM I / 2018/2019

: ROBOTIC SYSTEMS

PROGRAMME COURSE CODE : BEJ

: BEH41703

FIGURE Q3

SEMESTER/SESSION

: SEM I / 2018/2019

PROGRAMME

: BEJ

COURSE

: ROBOTIC SYSTEMS

COURSE CODE

: BEH41703

