

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

: INSTRUMENTATION AND

MEASUREMENT

COURSE CODE

: BEJ 10702

PROGRAMME

: BEJ

EXAMINATION DATE

: DECEMBER 2018/ JANUARY 2019

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

BEJ10702

- Q1 (a) Discuss the main advantage of Maxwell Bridge over other AC bridges? (2 marks)
 - (b) Two resistors (R_1 and R_2), two strain gauges (R_{G1} and R_{G2}), a voltage meter, and a 9V battery are given to measure the force applied on an aluminum plate. If $R_1 = R_2 = R_{G1} = R_{G2}$.
 - (i) Design a circuit that can measure the applied force and compensate the effect of temperature change using the given components.

 (4 marks)
 - (ii) Show that the designed circuit can compensate the effect of temperature.

(5 marks)

- (c) Discuss the **TWO (2)** differences between DC and AC bridges in a measurement (4 marks)
- (d) A Maxwell bridge is used to measure an inductive impedance as illustrated in **Figure** $1 \text{ (d). Show that } R_x = \frac{R_2 R_3}{R_1} \text{ and } L_x = R_2 R_3 C_1 \text{ when the bridge is balanced.}$ (10 marks)

02

BEJ10702

Q2	(a)	List three selection criteria for each component below;
		(i) Salaction of transducer classification

(1)

(3 marks)

Selection criteria of a sensor. (ii)

(3 marks)

- The relay of Figure Q2(b) is to be controlled by a photoconductive cell with the (b) characteristics. The circuit delivers 10 mA at a 30-V setting when the cell is illuminated with about 400 Im/m². The circuit becomes deenergized when the cell is dark. Calculate:
 - (i) The required series resistance.

(4 marks)

The level of the dark current. (ii)

(4 marks)

During experiment with a copper-costantan thermocouple, it was found that $c=3.75 \times 10^{-2} \text{ mV/}^{\circ}\text{C}$ and $k=4.50 \times 10^{-5} \text{ mV/}^{\circ}\text{C}$. If $T1=100^{\circ}\text{C}$ and the cold junction (c) T2 is kept in the ice, compute the resultant electromotive force, emf.

(6 marks)

An inductive transducer as shown in Figure Q2(d). Propose a solution to use an (d) inductive transducer to measure the liquid flowmeter.

(5 marks)

BEJ10702

- **Q3** (a) A resistive position transducer with a resistance of 10 k Ω and shaft stroke of 8 cm with a bridge circuit is used to measure the bumpiness of a roadway by moving it to the right as shown in Figure Q3(a). (Note: the initial position to be used as a reference point is when the shaft is at the middle of stroke). (i) Illustrate the equivalent circuit of the system. (2 marks) (ii) Derive the formula for V_{out} in terms of the value resistor in the circuit. (2 marks) (iii) Find the value of V_{out} when the shaft at initial position. (2 marks) (iv) Calculate the value of V_{out} when the shaft reached point A. (4 marks) (b) An accelerometer in Figure Q3(b) has a seismic mass of 0.05 kg and a spring constant of 3.0 x 103 N/m. Maximum mass displacement is ± 0.02 m (before the mass hits the stops). (i) Analyse the maximum measurable acceleration in **g**. (5 marks) (ii) Calculate the natural frequency, F_N . (5 marks)
 - (c) (i) Describe the steps to convert a binary number to gray code. (3 marks)
 - (ii) Illustrate the conversion of the binary number, 01001 into its gray code equivalent. (2 marks)

BEJ10702

Q4 List TWO (2) advantages and TWO (2) disadvantages of a digital instrument (a) compared to analog instrument.

(4 marks)

- Figure Q4(b) shows a circuit for voltage to frequency converter. (b)
 - (i) Describe the function of a voltage to frequency converter.

(2 marks)

(ii) Given $V_i = f/50$. Calculate the amplitude input voltage V_i of the voltage to frequency converter, if 600 pulses are passes by the AND gate during a 0.1 sec gating pulse.

(7 marks)

- (c) Figure Q4(c) shows a block diagram of an Single-slope Analog to Digital Converter (ADC).
 - (i)Determine the component for "A" and "B" in Figure Q4(c)

(2 marks)

- (ii) Sketch the output waveform of the circuit labeled 'Vio', 'Vc' and 'Pulse'. (4 marks)
- (iii) A Single-slope ADC as shown in Figure Q4(c) consists of a 1000 k Ω resistor and a 1 µF capacitor. The reference is 12 V. Calculate the conversion time for a 6.8 V analog input.

(6 marks)

-END OF QUESTIONS-

BEJ10702

FINAL EXAMINATION

SEMESTER/SESSION **COURSE**

: SEM I / 2018/2019

PROGRAMME

: BEJ

: INSTRUMENTATION AND

MEASUREMENT

COURSE CODE : BEJ10702

Figure Q2(b)

Jacoron Kendolerani bilekadank oso Robalik Paladii berib uleraan Elektrik dan Glekdonik Universit Eun bi viri Don bislaysia

D. Roses Land J. Burn Oly

BEJ10702

FINAL EXAMINATION

SEMESTER/SESSION

: SEM I / 2018/2019

MEASUREMENT

PROGRAMME

: BEJ

COURSE

: INSTRUMENTATION AND

COURSE CODE

: BEJ10702

Figure Q2 (d)

Figure Q3(a)

FINAL EXAMINATION

SEMESTER/SESSION

: SEM I / 2018/2019

PROGRAMME

: BEJ

COURSE

: INSTRUMENTATION AND MEASUREMENT

COURSE CODE

: BEJ10702

Figure Q3(b)

Figure Q4(b)

SK PER TO HANA AT MORANAD

FINAL EXAMINATION

SEMESTER/SESSION COURSE

: SEM I / 2018/2019

: INSTRUMENTATION AND

MEASUREMENT

PROGRAMME COURSE CODE : BEJ

: BEJ10702

Figure Q4(c)