

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2017/2018

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE : BEF12403

PROGRAMME CODE : BEV

EXAMINATION DATE : JUNE/JULY 2018

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

CU	INF)	IDENTIAL BEF12405		
Q1		ferentiate the following concepts. Use an appropriate diagram or port your explanation.	equation to	
	(a)	Conductor, insulator and semiconductor.	(6 marks)	
	(b)	Branches, nodes and loops.	(6 marks)	
Q2	In a	In a two-terminal device, a current $i(t) = 20 \cos 100 \pi t$ mA enters the first terminal.		
	(a)	Calculate the amount of current which enters that terminal in the	time interval	
		$-10 \le t \le 20 \text{ ms.}$	(4 marks)	
	(b)	Identify the current at $t = 40$ ms.	(2 marks)	
	(c)	Calculate the charge q at $t = 40$ ms given that $q(0) = 0$.	(4 marks)	
Q3	(a)	Compute the value of I_1 , I_2 and I_3 for the circuit in Figure Q3(a) .	(15 marks)	
	(b)	Identify a set of procedures to analyse any linear circuit.	(5 marks)	
Q4	(a)	Prove that $V_o = 15$ V for the circuit in Figure Q4(a) , by using nodal and	nalysis. (10 marks)	

(b) Calculate the voltage at terminals a and b for the circuit in Figure Q4(b) by using mesh analysis. (10 marks)

- Q5 The variable resistor, R_{LOAD} in the circuit of **Figure Q5** is adjusted to achieve maximum power transfer to R_{LOAD} .
 - (a) Calculate the value of R_{LOAD} that should be adjusted to absorb maximum power.

(17 marks)

(b) Find the maximum power transferred and absorbed by R_{LOAD} .

(3 marks)

Q6 (a) A circuit consisting of three resistances; 12 Ω , 18 Ω and 36 Ω respectively, joined in parallel, are connected in series with a fourth resistance, R. The circuit is supplied with 60 V and it is found that the power dissipated in the 12 Ω resistance is 36 watt. Determine the value of R and the total power dissipated by the resistors.

(10 marks)

(b) Determine the total resistance for the circuit in **Figure Q6(b)** at a – b terminals. (8 marks)

TERPUKA

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION : COURSE NAME

SEM II/ 2017/2018

ELECTRIC CIRCUIT ANALYSIS I

PROGRAMME CODE

COURSE CODE

BEV BEF12403

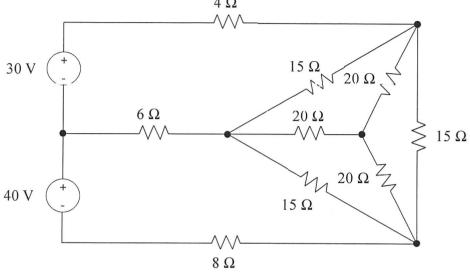


Figure Q3(a)

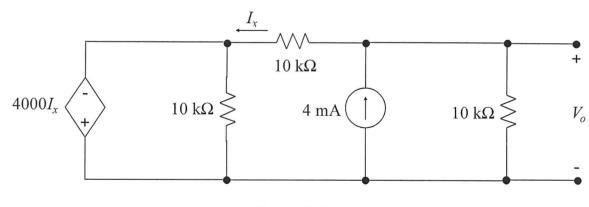
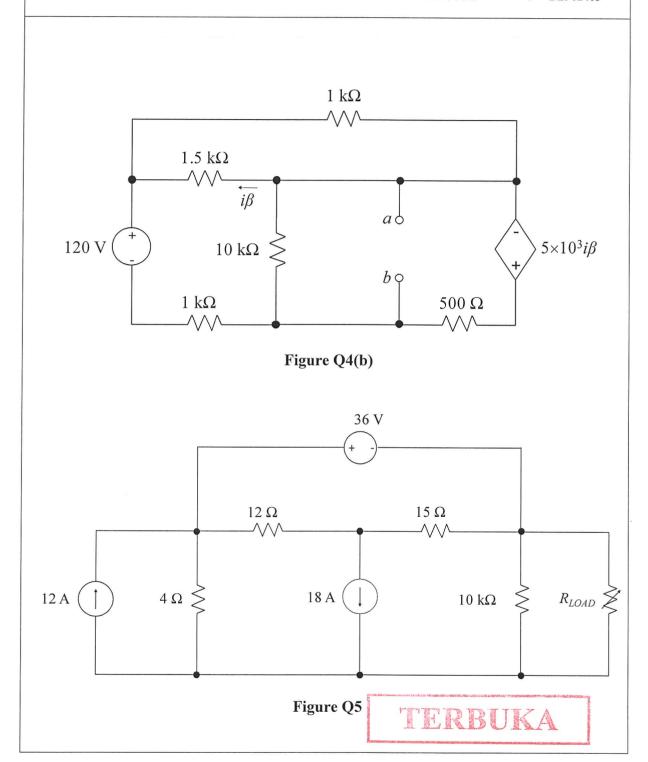


Figure Q4(a)

FINAL EXAMINATION

SEMESTER/SESSION : SEM II/ 2017/2018


PROGRAMME CODE : BEV

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE

BEF12403

FINAL EXAMINATION

SEMESTER/SESSION : SEM II/ 2017/2018

PROGRAMME CODE : BEV

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS I COURSE CODE : BEF12403

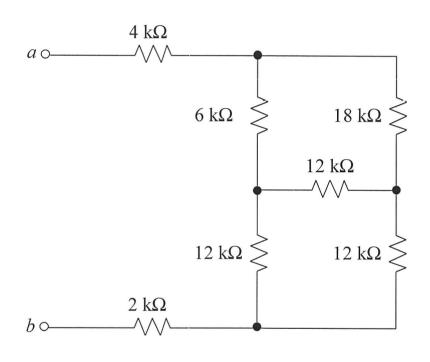


Figure Q6(b)

CONFIDENTIAL