

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2017/2018

COURSE NAME

: APPLIED ELECTROMAGNETICS

COURSE CODE

: BEB 30603

PROGRAMME CODE

: BEJ

EXAMINATION DATE

JUNE/JULY 2018

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

Faculty of Electrical & Electronic Engineering

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES described that the paper of the paper

Q1	(a)	Define lossless transmission lines together with the line parameters.			
	(b)	Explain the concept of skin depth with the help of a proper figure.			
				(2 marks)	
	(c)	Illustrate the concept of matching network in a transmission line system			
		Relate the matching network with impedance matching techniques. (3 marks)			
	(d)	A lossless transmission line of length 0.434 λ and characteristic impedance $100~\Omega$ is terminated in an impedance $260+j180~\Omega$. Use the Smith Chart to determine:			
		(i)	voltage reflection coefficient,		
		(ii)	standing wave ratio,		
		(iii)	input impedance, and		
		(iv)	the location of a voltage maximum closest to the load.	(12 marks)	
	(e)	The standing wave ratio on the line is now reduced to 2 by changing the terminating impedance to a resistive load, R _L . Determine:			
		(i)	resistive load R _L , and		
		(ii)	input impedance.	(6 marks	
Q2	(a)	Explain THREE (3) main roles of a metallic cavity in Microwave E		Engineering (4 marks)	
	(b)	Priofly describe the Quality Factor Q of the Coulty Factor Q if the			

Briefly describe the Quality Factor, Q of the Cavity. Evaluate Q if the Cavity (b) is lossless.

(4 marks)

(c) A rectangular air-filled copper waveguide with dimension 0.9 inch x 0.4 inch cross section and 12 inch length operates at 9.2 GHz with a dominant mode. Design a rectangular waveguide in a dominant mode of microwave operation

2

by calculating cut-off frequency, guide wavelength, phase velocity, characteristic impedance and loss factor. (12 marks)

- (d) Differentiate the field distribution of the waveguide for TE₁₀ and TE₂₀. With the help of relevant diagrams, explain important steps in order to avoid multimode operation in the waveguide. (5 marks)
- Q3 (a) With the aid of relevant equations or diagrams, briefly explain the following terms:
 - (i) gain, G_R for a receive antenna,
 - (ii) radiation efficiency, η_r ,
 - (iii) polarisation, and
 - (iv) half-power beam width.

(2 marks)

- (b) A dipole antenna of length 0.35λ operating at 3 GHz is constructed by using copper with 2.5 mm in diameter.
 - (i) Determine the radiation efficiency, η_r of the antenna.

(2 marks)

(ii) Calculate the directivity, D of the antenna if maximum radiation intensity, U_{max} of 0.75W/sr and input power, P_{in} of 0.25W are employed respectively.

(8 marks)

(iii) Four half-wave dipoles are arranged in a square lattice, spaced in a straight line by a distance of one half wavelength along a line. Illustrate the element pattern in both E and H planes and predict the boresight gain in case that all elements are fed with equal amplitudes which are in phase.

(5 marks)

(c) Given transmit antenna efficiency, η_r is 65%, design a parabolic reflector operating at 8.52 GHz with 15W of power radiated by the systems. In your consideration, plan the design of the reflector by taking into account the beam width, θ; transmit power, P_T; receive power, P_R; and Effective Isotropic kadiated Power, EIRP.

CONFIDENTIAL

BEB30603

Q4 (a) Differentiate between *Electromagnetic Compatibility* (EMC) and *Electromagnetic Interference* (EMI)

(2 marks)

(b) Describe the condition(s) when a system is considered as *Electromagnetically Compatible*.

(2 marks)

- (c) Figure Q4(c) shows an electrical system that fails some EMC tests due to some EMI issues.
 - (i) Relate to the EMC tests involved
 - (ii) Propose and elaborate some methods that you can used to minimize the emissions as shown in the Figure Q4(c).

(10 marks)

- (d) In EMC measurement setups, many *environments* such as listed below are involved:
 - Open Area Test Site (OATS)
 - Screened Room (SR)
 - GigaHertz Transverse Electromagnetic Cell (GTEM)
 - Semi Anechoic Room (SAR)
 - Reverberation Chamber (RC)
 - (i) Explain the term *environment* in the aspect of EMC testing. (2 marks)
 - (ii) From the environments listed above, compare these environments in terms of their advantages and disadvantages.

(9 marks)

- END OF QUESTIONS -

4

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: II/2017/2018

PROGRAMME : BEJ

COURSE NAME : APPLIED ELECTROMAGNETICS COURSE CODE: BEB 30603

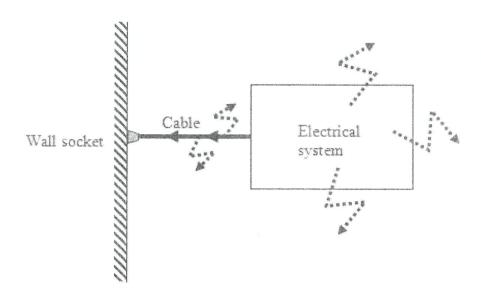
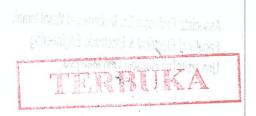



Figure Q4(c): Arrows show some types of emission

FINAL EXAMINATION

SEMESTER/SESSION: II/2017/2018

I/2017/2018 PROGRAMME : BEJ

COURSE NAME : APPLIED ELECTROMAGNETICS

COURSE CODE: BEB 30603

TM Modes	TE Modes
$Exs = -\frac{j\beta}{h^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$Exs = \frac{j\omega\mu}{h^2} \left(\frac{n\pi}{b}\right) H_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$
Eys = $-\frac{j\beta}{h^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$Eys = -\frac{j\omega\mu}{h^2} \left(\frac{m\pi}{a}\right) H_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$
$Ezs = E_O \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma \tau}$	Ezs = 0
$Hxs = \frac{j\omega\varepsilon}{h^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	$Hxs = \frac{j\beta}{h^2} \left(\frac{m\pi}{a}\right) H_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$
Hys = $-\frac{j\omega\varepsilon}{h^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$	Hys = $\frac{j\beta}{h^2} \left(\frac{n\pi}{b} \right) H_0 \cos \left(\frac{m\pi x}{a} \right) \sin \left(\frac{n\pi y}{b} \right) e^{-\gamma z}$
Hzs = 0	$Hzs = H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-\gamma z}$
$\eta = \eta' \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$	$\eta = \frac{\eta'}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$

These formulas below can be used for both TM and TE modes:

$$f_{c} = \frac{u'}{2} \sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$$

$$\lambda_{c} = \frac{u'}{f_{c}}$$

$$\beta = \beta' \sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}$$

$$u_{ph} = \frac{\omega}{\beta} = f\lambda'$$

Where:
$$h^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$
, $u' = \frac{1}{\sqrt{\mu\epsilon}}$, $\beta' = \frac{\omega}{u'}$, $\eta' = \sqrt{\frac{u}{\epsilon}}$