

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2017/2018

COURSE NAME

: VISION SYSTEM

COURSE CODE

: BEH 41902

PROGRAMME

: BEJ

EXAMINATION DATE : DECEMBER 2017/JANUARY 2018

DURATION

: 2 1/2 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

BEH 41902

Q1 (a) Explain the components of a computer vision and give one example of computer vision implementation in mechatronic application.

(2 marks)

- (b) For a pinhole camera model, one of the methods to get a larger image is by increasing the distance between the pinhole and the camera's screen. However, when the pinhole is replaced with a lens, such procedure is invalid and the obtained image become blur.
 - (i) By using proper illustration, explain why such condition occurs.

(2 marks)

(ii) Propose a solution to overcome such problem. (Please explain how the solution works).

(3 marks)

- (c) One of the bottlenecks of using camera for aerial robotic navigation is a small field of view (FOV). Such problem can be alleviated by using a fish eye lens, but the problem is that the obtained image is highly distorted.
 - (i) Explain the reasons tangential distortion and radial distortion that occur in a camera.

(2 marks)

(ii) Develop a procedure to undistort the image. You need to explain in detail each step taken, e.g., number of minimum samples, name of the algorithm and extracted information.

(5 marks)

(iii) If the rectified image consists of five big rectangles and four small circles with known and uniform dimension, design a morphological based procedure to automatically eliminate the small circle while retaining the rectangles.

(4 marks)

(d) From the binary image depicted in **Figure Q1(d)**, analyse the object center location by using geometrical moment features.

(7 marks)

BEH 41902

- Q2 You have been given a task to segment out objects carried on a conveyor. The captured grayscale image is underexposed and overexposed in some of the area. There are two methods that can be used to accomplish the task:
 - (a) The first method is by improving image quality prior to the segmentation process.
 - (i) Illustrate a histogram of an underexposed and overexposed image. (2 marks)
 - (ii) Construct an algorithm to adaptively improve the underexposed/overexposed area in the image. (Please state clearly each step taken including the utilised equation).

(4 marks)

(iii) From the enhanced image, propose a solution to automatically determine an optimal threshold value. (Please explain the method as detail as possible).

(4 marks)

- (b) The second method is by using an adaptive threshold technique.
 - (i) Explain how the adaptive threshold technique can be invariant under various lighting condition.

(2 marks)

(ii) Compose the binary image of **Figure Q2(b)(ii)** using mean-C adaptive threshold with 3X3 mean kernel and C= 30.

(13 marks)

- Q3 From the image shown in Figure Q3:
 - (a) Produce the new image after been transformed using Histogram Equalization.

(9 marks)

(b) Compare the image before and after transformation in term of the histogram distribution and the image quality.

(2 marks)

(c) Compose the edge map from the transformed image using following Prewitt operator if the threshold value is 205.

BEH 41902

$$dx = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}, dy = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

(10 marks)

(d) From the edgels locations, design a procedure to determine number of straight lines in the object and consequently the type of object shape (Please use illustration and explain in detail each steps).

(4 marks)

Q4 (a) A fully connected Multi layer Perceptron Neural Network (MLPNN) classifier was developed with linear activation function in the input nodes (O_i) and log sigmoid activation functions in the hidden node (O_j) and output node (O_k) as shown below:

$$f(net_j) = \frac{1}{1 + e^{-0.5net_j}}$$

The classifier consist of three input nodes, three hidden nodes, and one output node that is responsible to classify between two groups of output labeled as '0' and '1'.

(i) Illustrate the architecture of the MLPNN model if $w_{ij}(i,j)$ is the weights between input and hidden layer and $w_{jk}(j,k)$ is the weights between hidden and output layer. (Please label your drawing)

(3 marks)

(ii) If $w_{ij}(0,0)=14.24$, $w_{ij}(0,1)=-1.3$, $w_{ij}(0,2)=11.37$, $w_{ij}(1,0)=4.59$, $w_{ij}(1,1)=12.39$, $w_{ij}(1,2)=1.37$, $w_{ij}(2,0)=-11.44$, $w_{ij}(2,1)=8.25$, $w_{ij}(2,2)=7.6$, $w_{jk}(0,0)=-15.42$, $w_{jk}(1,0)=-15.68$ and $w_{jk}(2,0)=-7.09$, analyse the group category given inputs $A=[0\ 0\ 0]$, $B=[0\ 1\ 1]$ and $C=[1\ 1\ 0]$.

(14 marks)

- (b) You have been given a stereo vision system with two cameras aligned as shown in **Figure Q4** (b).
 - (i) Derive the equation to relate the real 3D coordinate with the pixel locations in the left and right camera images.

TERBUKA

(3 marks)

CONFIDENTIAL

BEH 41902

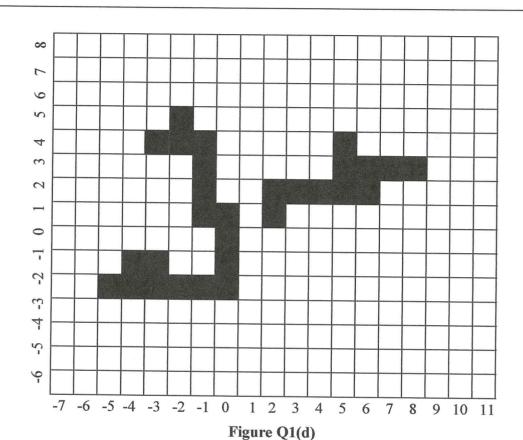
(ii) SAD (sum of absolute differences) is a technique for evaluating the similarity between two same size regions, and widely used in stereovision, optical flow and motion estimation. Explain how SAD works to determine the correspondence between the left and right images.

(3 marks)

(iii) Applying a stereo camera in an indoor navigation will generate 3D data that are greatly contaminated with unnecessary pixels due to the fact that the floor and ceiling are partially visible within the camera's field of view. Construct a method for detecting ground plane and ceiling information from the acquire depth map.

(2 marks)

- END OF QUESTIONS -


FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2017/2018

COURSE NAME : VISION SYSTEM

PROGRAMME: BEJ

COURSE CODE: BEH 41902

TERBUKA

40	50	30	20	20
40	100	80	30	20
200	150	107	109	40
207	205	106	103	50
200	180	170	150	50

Figure Q2(b)(ii)

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2017/2018 COURSE NAME: VISION SYSTEM

PROGRAMME CODE: BEJ COURSE CODE: BEH 41902

50	50	50	50	50	17
17	17	17	17	33	33
20	0	70	60	70	33
20	0	60	60	80	33
20	0	80	90	80	0
50	20	33	33	0	0

Figure Q3

TERBUKA

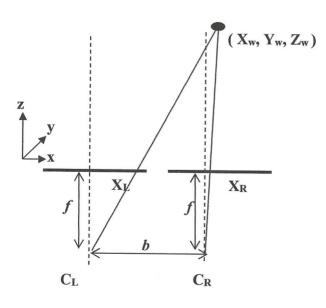


Figure Q4(b)

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2017/2018 COURSE NAME: VISION SYSTEM PROGRAMME CODE: BEJ COURSE CODE: BEH 41902

Geometrical Moment Definition

General Moment Equation

$$m_{pq} = \sum_{(x,y) \in R} \sum x^p y^q$$

Central Moment of the Image

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} f(x, y)$$

Where:
$$\bar{x} = \frac{m_{10}}{m_{00}}$$
 and $\bar{y} = \frac{m_{01}}{m_{00}}$

