UNIVERSITI TUN HUSSEIN ONN MALAYSIA ## FINAL EXAMINATION **SEMESTER 1 SESSION 2017/2018** COURSE NAME : ANALOG ELECTRONICS COURSE CODE : BEL10203 PROGRAMME : BEJ/BEV EXAMINATION DATE : DISEMBER 2017/JANUARY 2018 **DURATION** : 3 HOURS INSTRUCTION : ANSWER ALL QUESTIONS THIS QUESTION PAPER CONSISTS OF **EIGHT (8)** PAGES CONFIDENTIAL - Q1 (a) Materials can be classified in terms of their electrical properties. With the aid of diagram: - (i) Distinguish the energy diagrams of a conductor, an insulator, and a semiconductor. (6 marks) (ii) Explain how an N-type semiconductor is formed. (2 marks) (b) Diodes are used in various circuit applications such as in voltage regulator, clipper and clamper circuit. Design a diode clamper to generate the output voltage, *Vo* from the input voltage, *Vi* as shown in **Figure Q1(b)**. Assume ideal diode model in your design. (8 marks) Figure Q1(b) - (c) Zener diode is a special type of P-N junction device which operate in its reverse-breakdown region. **Figure Q1(c)** shows an application of Zener diode in a voltage regulator circuit. Given $V_{IN} = 50 \text{ V}$, $R = 1 \text{ k}\Omega$, $V_Z = 10 \text{ V}$ and $I_{ZM} = 32 \text{ mA}$. - (i) Analyze the range of load resistance, R_L and load current, I_L that will result in V_{RL} being maintained at 10 V. (7 marks) (ii) Determine the maximum power rating P_{Zmax} of the Zener diode. (2 marks) - Q2 (a) Figure Q2(a) shows a Bipolar Junction Transistor (BJT) amplifier circuit in voltage divider configuration. Given the values of R_1 = 32 k Ω , R_2 = 3.2 k Ω , R_C = 10 k Ω , R_E = 1.5 k Ω , β = 100 and V_{CC} = 22 V. Clearly show all the calculation. - (i) Suppose the circuit is to be analyzed using approximation method. Verify the condition that need to be met. (1 mark) (ii) Determine the collector current, I_C of the circuit in **Figure Q2(a)** using exact analysis method. (7 marks) (iii) By using the answer from Q2(a)(ii), calculate the dc biasing voltage, V_{CE}. (2 marks) Figure Q2(a) - (b) A common emitter amplifier fixed bias circuit is shown in **Figure Q2(b)**. Given $R_1 = 480 \text{ k}\Omega$, $R_C = 3.9 \text{ k}\Omega$, $\beta = 200$, $V_{CC} = 15 \text{ V}$, $C_1 = C_2 = 10 \text{ }\mu\text{F}$, and assume $V_{BE} = 0.7 \text{ V}$. Show all the calculation clearly. - (i) Identify the purpose of coupling capacitor in **Figure Q2(b)**. (2 marks) - (ii) Draw the AC equivalent circuit using r_e model. Assume r_o = ∞ (3 marks) - (iii) Calculate the input impedance, Z_i and output impedance, Z_o . (Hint: Check the testing condition and relates with DC analysis if required) (6 marks) - (iv) Find the voltage gain, A_{ν} and the current gain, A_{i} . (4 marks) Figure Q2(b) ## **CONFIDENTIAL** ## BEL 10203 Q3 (a) The MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) differs from the JFET because it has no PN junction structure. State **TWO (2)** types of MOSFET and briefly explain the operating mode of current and voltage. (6 marks) - (b) An FET transistor circuit has the following parameters: V_{DD} = 15 V, $R_{G1(UPPER)}$ = 4.7 M Ω , $R_{G2(LOWER)}$ = 3.3 M Ω , R_D = 200 Ω , R_L = 500 Ω , C_g = 1 μ F, C_d = 10 μ F and C_l = 22 μ F. The FET transistor has V_{TH} = 4 V and $I_{D \ (on)}$ = 14 mA at V_{GS} = 6 V. - (i) Draw the FET circuit based on the given parameters. (1 mark) (ii) Determine the I_{DO} and V_{GSO} . (3 marks) (iii) Construct the small-signal equivalent circuit based on the FET transistor circuit drawn in Q3(b)(i). (3 marks) (iv) Calculate the input impedance, Z_i , the voltage gain, A_V , the current gain, A_i and the power gain, A_p of the circuit. (10 marks) (v) Deduce the effect to the voltage gain, A_{ν} if an additional resistor is connected between source terminal and ground. (2 marks) Q4 (a) A common emitter (CE) amplifier shown in **Figure Q4(a)**. The parameters are given as follows: Figure Q4(a) (i) Determine the cut off frequency due to C_S. (3 marks) (ii) Determine the cut off frequency due to C_C. (3 marks) (iii) Determine the cut off frequency due to C_E. (4 marks) (iv) Draw the resultant frequency response and label clearly the low cut off frequency. (5 marks) (b) **Figure Q4(b)** shows a commonly used *Push-Pull* amplifier circuit. (i) Explain the operation of the amplifier in **Figure Q4(b)** during positive half cycle and negative half cycle by stating the operation for both Q_1 and Q_2 , and the condition of current, I_C . (4 marks) (ii) Suppose no bias voltage is applied at both emitter terminals. Redraw the circuit in **Figure Q4(b)** to fulfil this requirement. Name your circuit as **Figure A**. (1 mark) - (iii) A severe output signal distortion will be resulted due to circuit connections given in **Figure A**. By using a suitable diagram, explain how this problem occurs. (4 marks) - (iv) Recommend a solution for the problem stated in **Q4(b)(iii)**. (1 mark) -END OF QUESTIONS-