

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER 1 SESSION 2017/2018**

COURSE NAME

: ANALOG ELECTRONICS

COURSE CODE

: BEL10203

PROGRAMME

: BEJ/BEV

EXAMINATION DATE : DISEMBER 2017/JANUARY 2018

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF **EIGHT (8)** PAGES

CONFIDENTIAL

- Q1 (a) Materials can be classified in terms of their electrical properties. With the aid of diagram:
 - (i) Distinguish the energy diagrams of a conductor, an insulator, and a semiconductor.

(6 marks)

(ii) Explain how an N-type semiconductor is formed.

(2 marks)

(b) Diodes are used in various circuit applications such as in voltage regulator, clipper and clamper circuit. Design a diode clamper to generate the output voltage, *Vo* from the input voltage, *Vi* as shown in **Figure Q1(b)**. Assume ideal diode model in your design.

(8 marks)

Figure Q1(b)

- (c) Zener diode is a special type of P-N junction device which operate in its reverse-breakdown region. **Figure Q1(c)** shows an application of Zener diode in a voltage regulator circuit. Given $V_{IN} = 50 \text{ V}$, $R = 1 \text{ k}\Omega$, $V_Z = 10 \text{ V}$ and $I_{ZM} = 32 \text{ mA}$.
 - (i) Analyze the range of load resistance, R_L and load current, I_L that will result in V_{RL} being maintained at 10 V.

(7 marks)

(ii) Determine the maximum power rating P_{Zmax} of the Zener diode.

(2 marks)

- Q2 (a) Figure Q2(a) shows a Bipolar Junction Transistor (BJT) amplifier circuit in voltage divider configuration. Given the values of R_1 = 32 k Ω , R_2 = 3.2 k Ω , R_C = 10 k Ω , R_E = 1.5 k Ω , β = 100 and V_{CC} = 22 V. Clearly show all the calculation.
 - (i) Suppose the circuit is to be analyzed using approximation method. Verify the condition that need to be met.

(1 mark)

(ii) Determine the collector current, I_C of the circuit in **Figure Q2(a)** using exact analysis method.

(7 marks)

(iii) By using the answer from Q2(a)(ii), calculate the dc biasing voltage, V_{CE}.

(2 marks)

Figure Q2(a)

- (b) A common emitter amplifier fixed bias circuit is shown in **Figure Q2(b)**. Given $R_1 = 480 \text{ k}\Omega$, $R_C = 3.9 \text{ k}\Omega$, $\beta = 200$, $V_{CC} = 15 \text{ V}$, $C_1 = C_2 = 10 \text{ }\mu\text{F}$, and assume $V_{BE} = 0.7 \text{ V}$. Show all the calculation clearly.
 - (i) Identify the purpose of coupling capacitor in **Figure Q2(b)**. (2 marks)
 - (ii) Draw the AC equivalent circuit using r_e model. Assume r_o = ∞ (3 marks)
 - (iii) Calculate the input impedance, Z_i and output impedance, Z_o . (Hint: Check the testing condition and relates with DC analysis if required)

 (6 marks)
 - (iv) Find the voltage gain, A_{ν} and the current gain, A_{i} . (4 marks)

Figure Q2(b)

CONFIDENTIAL

BEL 10203

Q3 (a) The MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) differs from the JFET because it has no PN junction structure. State **TWO (2)** types of MOSFET and briefly explain the operating mode of current and voltage.

(6 marks)

- (b) An FET transistor circuit has the following parameters: V_{DD} = 15 V, $R_{G1(UPPER)}$ = 4.7 M Ω , $R_{G2(LOWER)}$ = 3.3 M Ω , R_D = 200 Ω , R_L = 500 Ω , C_g = 1 μ F, C_d = 10 μ F and C_l = 22 μ F. The FET transistor has V_{TH} = 4 V and $I_{D \ (on)}$ = 14 mA at V_{GS} = 6 V.
 - (i) Draw the FET circuit based on the given parameters.

(1 mark)

(ii) Determine the I_{DO} and V_{GSO} .

(3 marks)

(iii) Construct the small-signal equivalent circuit based on the FET transistor circuit drawn in Q3(b)(i).

(3 marks)

(iv) Calculate the input impedance, Z_i , the voltage gain, A_V , the current gain, A_i and the power gain, A_p of the circuit.

(10 marks)

(v) Deduce the effect to the voltage gain, A_{ν} if an additional resistor is connected between source terminal and ground.

(2 marks)

Q4 (a) A common emitter (CE) amplifier shown in **Figure Q4(a)**. The parameters are given as follows:

Figure Q4(a)

(i) Determine the cut off frequency due to C_S.

(3 marks)

(ii) Determine the cut off frequency due to C_C.

(3 marks)

(iii) Determine the cut off frequency due to C_E.

(4 marks)

(iv) Draw the resultant frequency response and label clearly the low cut off frequency.

(5 marks)

(b) **Figure Q4(b)** shows a commonly used *Push-Pull* amplifier circuit.

(i) Explain the operation of the amplifier in **Figure Q4(b)** during positive half cycle and negative half cycle by stating the operation for both Q_1 and Q_2 , and the condition of current, I_C .

(4 marks)

(ii) Suppose no bias voltage is applied at both emitter terminals. Redraw the circuit in **Figure Q4(b)** to fulfil this requirement. Name your circuit as **Figure A**.

(1 mark)

- (iii) A severe output signal distortion will be resulted due to circuit connections given in **Figure A**. By using a suitable diagram, explain how this problem occurs.

 (4 marks)
- (iv) Recommend a solution for the problem stated in **Q4(b)(iii)**.

(1 mark)

-END OF QUESTIONS-

