

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

TERBUKA

COURSE NAME

: DIGITAL TECHNIQUES

COURSE CODE

: BEF12302

PROGRAMME CODE

: BEV

EXAMINATION DATE

: DECEMBER 2016/ JANUARY 2017

DURATION

: 2 HOURS

INSTRUCTION

: 1. ANSWER ALL QUESTIONS

2. ATTACH **APPENDIX A AND B** WITH YOUR ANSWER BOOKLET

THIS QUESTION PAPER CONSISTS OF ELEVEN (11) PAGES

BEF12302

Q1	(a)	List one (1) disadvantage of series and parallel digital data transmission				
		(2 mar	ks)			
	(b)	Identify why digital data transmission is preferred over analogue data transmission? (4 mar)	·ks)			
	(c)	Convert the Gray code 111011000110 to BCD number. (6 mar	·ks)			
	(d)	Convert 324.253 ₁₀ to octal. (6 mar	·ks)			
	(e)	A 4-bit binary number is represent by A_3 A_2 A_1 A_0 with A_3 A_2 A_1 and A_0 the individual bits and A_0 is the LSB. Draw a combinational logic circ				

(e) A 4-bit binary number is represent by $A_3 A_2 A_1 A_0$ with $A_3 A_2 A_1$ and A_0 are the individual bits and A_0 is the LSB. Draw a combinational logic circuit which produce an output HIGH when the binary number $A_3 A_2 A_1 A_0$ should be at least 5_{10} and above and less than 12_{10} .

(7 marks)

- Q2 (a) Simplify using Boolean Algebra:
 - (i) $\overline{AB + AC} + \overline{ABC}$.

(3 marks)

(ii) $(A+C)(A+\overline{B})$.

(3 marks)

- (b) Table 2 (b) shows a truth table of a four-input and two-output logic function. Use Karnaugh maps, formulate:
 - (i) the minimal sum-of-product (MSOP) of expression for Y.

(5 marks)

(ii) the minimal product-of-sum (MPOS) of expression for Z.

(5 marks)

- (c) A NAND gate is known as a universal gate as it can be configured into any basic logic gate.
 - i) Illustrate how a NAND gate can be used as OR gate.

(3 marks)

ii) Implement the function $Z = P\overline{Q} + \overline{S} + P\overline{R}$ using only a 2-input NAND gates.

(6 marks)

BEF12302

- Q3 (a) Explain the operation of the following functional combinational logic circuit. You may use appropriate diagram to aid your explanation.
 - i) Decoder.

(2 marks)

ii) Comparator

(2 marks)

- (b) Analyze the 16 inputs multiplexer shown in Figure Q3 (b).
 - i) Give brief explanation of the system.

(4 marks)

ii) Find the Boolean expression for the output Z

(6 marks)

(c) Implement the following Boolean expression using IC 74LS138 (3-to-8 decoder) in **APPENDIX A**. Symbol for IC 74LS138 is shown in **APPENDIX A** for the internal circuitry and pins assignment of 74LS138 (3-to-8 decoder).

$$\mathbf{Z} = (\overline{A.B}) + (\overline{B+C})$$

(6 marks)

(d) Analyze the flip-flop circuit in **Figure Q3 (d)** and sketch output waveform. Assume both SET and CLR are inactive. Complete the timing diagram for Q in **APPENDIX B** and write down the operation (e.g. HOLD) that takes place in each clock pulse as illustrated in the diagram.

(5 marks)

BEF12302

- Q4 (a) Explain **one** (1) advantage and **two** (2) disadvantages of a synchronous counter compared to asynchronous counter.

 (3 marks)
 - (b) Figure Q4 (b) shows the state transition diagram of a state machine.
 - (i) Build the excitation table for this state machine. Use JK flip-flops. (10 marks)
 - (ii) Express the simplest Boolean expression for the circuit using Karnaugh map.

 (6 marks)
 - (iii) Draw the circuit.

(4 marks)

(d) Explain the operation of the Parallel In Serial Out register (PISO) register. You may use appropriate diagram to aid your explanation.

(2 marks)

-END OF QUESTION-

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017

COURSE :DIGITAL TECHNIQUES COURSE CODE: BEF12302

PROGRAMME CODE: BEV

Table 2 (b)

Table 2 (b)									
	INF	OUTPUT							
A	В	С	D	Y	Z				
0	0	0	0	1	1				
0	0	0	1	0	0				
0	0	1	0	0	1				
0	0	1	1	0	0				
0	1	0	0	1	0				
0	1	0	1	X	0				
0	1	1	0	1	0				
0	1	1	1	0	0				
1	0	0	0	0	X				
1	0	0	1	X	0				
1	0	1	0	X	1				
1	0	1	1	1	0				
1	1	0	0	1	1				
1	1	0	1	1	X				
1	1	1	0	X	0				
1	1	1	1	X	1				

TERBUKA

FINAL EXAMINATION SEMESTER/SESSION: SEM I/2016/2017 PROGRAMME CODE: BEV :DIGITAL TECHNIQUES COURSE CODE: BEF12302 **COURSE** ABC D Vcc Vcc (4) (11)(4) (11)10 S0 Ю SÕ (3) (3) (10)(10)\$1 S1 11 (2) (2) (9) (9) 12 12 S2 S2 (1) (1) 13 13 (15) (15)14 (5)(5) (14) (14)15 (13)(13) 16 (12)(12)Gnd 17 17 Gnd EN EN FIGURE Q3 (b) TERBUKA

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017

COURSE

:DIGITAL TECHNIQUES

PROGRAMME CODE: BEV

COURSE CODE: BEF12302

FIGURE Q4 (b)

FINAL EXAMINATION SEMESTER/SESSION: SEM I/2016/2017 PROGRAMME CODE: BEV COURSE :DIGITAL TECHNIQUES COURSE CODE: BEF12302 APPENDIX A

PIN ASSIGNMENT AND INTERNAL CIRCUITRY

74LS138 (3-to-8 Decoder)

TERBUKA

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017

COURSE

:DIGITAL TECHNIQUES

PROGRAMME CODE: BEV

COURSE CODE: BEF12302

APPENDIX B

TERBUKA