UNIVERSITI TUN HUSSEIN ONN MALAYSIA # FINAL EXAMINATION SEMESTER II **SESSION 2015/2016** COURSE NAME : DIGITAL SIGNAL PROCESSING COURSE CODE : BEF 35603 PROGRAMME : BEV EXAMINATION DATE : JUNE / JULY 2016 DURATION : 3 HOURS INSTRUCTION : ANSWER ALL QUESTIONS THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES Q1 (a) A discrete signal is defined as $$x(n) = \begin{cases} 2n & for \ 1 \le n \le 3 \\ 0 & for \ else \end{cases}$$ (i) Sketch the signal $w(n)=x(n-1)-3\delta(n-1)$, for $0 \le n \le 4$. (4 marks) - (ii) Classify and explain whether or not the system for Q1(a)(i) is causal system (2 marks) - (iii) Classify and explain whether or not the system for Q1(a)(i) is dynamic system. (2 marks) (iv) Sketch the signal y[n] = x[-n+5], for $0 \le n \le 4$. (2 marks) - (v) Prove whether or not the system for Q1(a)(iv) is linear and time invariant. (6 marks) - (b) State **five** (5) elements in the digital signal processing system. (4 marks) Q2 (a) A continuous voltage signal has the following function: $$v(t) = 12\sin(100\pi t) - 7$$ volt If the signal is sampled with sampling time of $0.004 \, s$ and quantized by using truncation technique with quantisation interval of 1 volt, (i) Explain whether the aliasing sampled signal will occur. (2 marks) - (ii) Determine digital frequency and digital period of the sampled signal. (2 marks) - (iii) Calculate the sampled signal v(n) for the first period. (4 marks) (iv) Calculate the quantized signal v(n) for one period. (2 marks) (v) Analyse the actual quantized signal to noise SNR_Q for one period. (8 marks) - (b) State any **two (2)** process in the Analog to Digital Converter (ADC) system. (2 marks) - Q3 (a) A Finite Impulse Response (FIR) filter has an impulse response of: $$h[n] = 3\delta[n+1] + 2\delta[n-1];$$ for $-1 \le n \le 1$ The input is a periodic signal with digital period of N=3, $$x[n] = \{3, 2, 1\}$$ Determine output response of the system using one of periodic convolution method. (5 marks) (b) Function of the FIR filter is given by $$h[n] = \{ \stackrel{\downarrow}{2}, 2, 3 \}$$ This function generate a cross-correlation of: $$r_{xh}[n] = \{3, 8, 9, 9, 4, 2\}$$ Calculate the input functions of the system. (5 marks) (c) Determine the Discrete Fourier Transform (DFT) of the four-point sequence of: $x[n] = \{ 2, 3, 2, 1 \}$ (7 marks) (d) A DFT has function of: $$X_{DFT}[k] = \{15, (2-3j), -3, (2+3j), 15, (2-3j)\}$$ Calculate the DFT of y[n]=x[n-3], by using the properties of the DFT. (3 marks) Q4 (a) Determine the z-transform and specify its region of convergence (ROC) of the following signal: $$x_1[n] = \{ \stackrel{\downarrow}{2}, 0, 4, 0, 6 \}$$ (3 marks) (b) Determine the z-transform and the ROC of the causal system $$x[n] = 4^{(n+1)}u[n]$$ (4 marks) (c) A causal system is described by the following difference equation: $$y[n] = 0.6y[n-1] + 2x[n]$$ (i) Calculate the transfer function of the system H(z). (3 marks) (ii) Estimate the output response of y[n] if the input signal is given by: $$x[n] = 3u[n]$$ (10 marks) - Q5 (a) List **two** (2) classifications of digital filter and state an advantage of each filters (4 marks) - (b) An analog filter has function of: $$H(s) = \frac{4}{s+4}$$ (i) Determine function of a digital filter H(z), by using impulse invariant at sampling frequency of S=2 Hz. (6 marks) (ii) Determine the sampling rate hence the filter is always stable. Solve the digital filter by using mapping based on the backward difference at sampling rate of *S*. (4 marks) (c) An analog lowpass filter has transfer function of $$H(s) = \frac{2}{s^2 - 2s + 2}$$ has cutoff frequency of 1 rad/s. Use this prototype to design a digital highpass filter with a cutoff frequency of 500 Hz and S=2 kHz. (6 marks) - END OF QUESTIONS - SEMESTER/SESSION: II/2015/2016 COURSE NAME : DIGITAL SIGNAL PROCESSING PROGRAMME : BEV COURSE CODE : BEF 35603 #### **APPENDIX** | $e^{\pm jm\pi} = -1$ | m= 1, 3, 5, | |----------------------|--------------| | $e^{\pm jm\pi} = 1$ | m= 2, 4, 6, | | $e^{jm\pi/2}=j$ | m= 1, 5, 9 | | $e^{jm\pi/2} = -j$ | m= 3, 7, 11, | | $e^{-jm\pi/2} = -j$ | m= 1, 5, 9 | | $e^{-jm\pi/2}=j$ | m= 3, 7, 11, | ## TABLE OF NUMERICAL DIFFERENCE ALGORTHMS | Difference | Numerical Algorithm | Mapping for s | |------------|--------------------------------------|-----------------------------| | Backward | $y(n) = \frac{x(n) - x(n-1)}{t_s}$ | $s = \frac{z - 1}{zt_s}$ | | Forward | $y(n) = \frac{x(n+1) - x(n)}{t_s}$ | $s = \frac{z - 1}{t_s}$ | | Central | $y(n) = \frac{x(n+1) - x(n-1)}{t_s}$ | $s = \frac{z^2 - 1}{2zt_s}$ | SEMESTER/SESSION: II/2015/2016 COURSE NAME : DIGITAL SIGNAL PROCESSING COURSE CODE : BEF 35603 PROGRAMME : BEV ### TABLE OF LAPLACE TRANSFORM PAIRS | f(t) | F(s) | |----------------|--------------------------| | au(t) | $\frac{a}{s}$ | | t ⁿ | $\frac{n!}{s^{n+1}}$ | | e^{-at} | $\frac{1}{s+a}$ | | $t^n e^{-at}$ | $\frac{n!}{(s+a)^{n+1}}$ | ### TABLE OF Z-TRANSFORM PAIRS | x(n) | X(z) | ROC | |----------------|--|---------| | u(n) | $\frac{1}{1-z^{-1}}$ | z > 1 | | $a^n u(n)$ | $\frac{1}{1-az^{-1}}$ | z > a | | $na^nu(n)$ | $\frac{az^{-1}}{(1-az^{-1})^2}$ | z > a | | -u(-n-1) | $\frac{1}{1-z^{-1}}$ | z < 1 | | $-a^nu(-n-1)$ | $\frac{1}{1-az^{-1}}$ | z < a | | $-na^nu(-n-1)$ | $\frac{az^{-1}}{\left(1-az^{-1}\right)^2}$ | z < a | SEMESTER/SESSION: II/2015/2016 PROGRAMME : BEV COURSE NAME : DIGITAL SIGNAL PROCESSING COURSE CODE : BEF 35603 ## TABLE OF D2D FREQUENCY TRASNFORMATION | Form | Band Edge (s) | Mapping z → | Mapping parameters | |----------|-------------------------|--|---| | LP2LP | $\Omega_{ m C}$ | $\frac{z-\alpha}{1-\alpha z}$ | $\alpha = \frac{\sin[0.5(\Omega_D - \Omega_C)]}{\sin[0.5(\Omega_D + \Omega_C)]}$ | | LP2HP | $\Omega_{ m C}$ | $\frac{-(z-\alpha)}{1+\alpha z}$ | $\alpha = \frac{-\cos[0.5(\Omega_D + \Omega_C)]}{\cos[0.5(\Omega_D - \Omega_C)]}$ | | LP2BP | Ω_1 , Ω_2 | $\frac{-(z^2 + A_1 z + A_2)}{A_2 z^2 + A_1 z + 1}$ | $K = \frac{\tan(0.5\Omega_D)}{\tan(0.5(\Omega_2 - \Omega_1))}$ | | | | $A_2z^2 + A_1z + 1$ | $\alpha = \frac{-\cos[0.5(\Omega_2 + \Omega_1)]}{\cos[0.5(\Omega_2 - \Omega_1)]}$ | | | | | $A_1 = 2\alpha K/(K+1)$ | | | | | $A_2 = (K-1)/(K+1)$ | | | | | $K = \tan(0.5\Omega_D)\tan(0.5(\Omega_2 - \Omega_1))$ | | LP2BS | Ω_1 , Ω_2 | $\frac{z^2 + A_1 z + A_2}{A_2 z^2 + A_1 z + 1}$ | $\alpha = \frac{-\cos[0.5(\Omega_2 + \Omega_1)]}{\cos[0.5(\Omega_2 - \Omega_1)]}$ | | | | | $A_1 = 2\alpha K/(K+1)$ | | NI-A TPI | 1 | | $A_2 = -(K-1)/(K+1)$ | Note: The digital lowpass prototype cutoff frequency is Ω_D All digital frequencies are normalized to $\Omega=2\pi f/S$ SEMESTER/SESSION COURSE NAME : II/ 2015/ 2016 : DIGITAL SIGNAL PROCESS ## TABLE OF A2D TRASNFORMATION FOR BILINEAR DESIGN | Form | Band
Edge (s) | Mapping s → | Mapping parameters | |-------|----------------------------------|------------------------------------|---| | LP2LP | $\Omega_{ m C}$ | $\frac{z-1}{C(z+1)}$ | $C = \tan(0.5\Omega_C)$ | | LP2HP | $\Omega_{ m C}$ | $\frac{C(z+1)}{(z-1)}$ | $C = \tan(0.5\Omega_C)$ | | LP2BP | $\Omega_1 < \Omega_0 < \Omega_2$ | $\frac{z^2-2\beta.z+1}{C(z^2-1)}$ | $C = \tan(0.5(\Omega_2 - \Omega_1))$ $\beta = \cos \Omega_0$ or $\beta = \frac{\cos[0.5(\Omega_2 + \Omega_1)]}{\cos[0.5(\Omega_2 - \Omega_1)]}$ | | LP2BS | $\Omega_1 < \Omega_0 < \Omega_2$ | $\frac{C(z^2-1)}{z^2-2\beta .z+1}$ | $C = \tan(0.5(\Omega_2 - \Omega_1))$ $\beta = \cos\Omega_0$ or $\beta = \frac{\cos[0.5(\Omega_2 + \Omega_1)]}{\cos[0.5(\Omega_2 - \Omega_1)]}$ | Note: The analog lowpass prototype prewarped cutoff frequency is 1 rad/s. All digital frequencies are normalized to $\Omega=2\pi f/S$ but are not prewarped