

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2015/2016**

COURSE NAME

: MEMS AND NEMS DESIGN

COURSE CODE

: BED 40503

PROGRAMME

BACHELOR OF ELECTRONIC

ENGINEERING WITH HONOURS

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2016

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER ALL QUESTIONS

DO NOT BRING OUT THIS

QUESTION BOOKLET FROM THE

EXAMINATION HALL

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

BED 40503

PART A: ANSWER ALL QUESTIONS IN THE OMR FORM

(1 mark each)

Q1	In general, a microsystem consists of			
	(a)	one component	(c)	three components
	(b)	two components	(d)	four components
02	C	ificial layers in surface micromachinin	o are	used to
Q2	Sacr	ificial layers in surface inicromacinim	ig aic	used to
	(a)	strengthen the microstructure	(c)	create necessary geometric voids in the microstructure
	(b)	be part of the structure	(d)	create an ohmic contact
Q3	The sensor that is used in airbag deployment systems in automobiles is			stems in automobiles is
	(a)	pressure sensor	(c)	thermal sensor
	(b)	inertia sensor	(d)	chemical sensor
Q4	Isotropic etching is hardly desirable in microfabrication because			prication because
	(a)	the etching rate is too low	(c)	the etching profile is unknown
	(b)	the cost is too high	(d)	the etching trajectories is hard to control
Q5	The most favoured orientation for micromachining of silicon wafers is the			ning of silicon wafers is the
	(a)	<100>	(c)	<111>
	(b)	<110>	(d)	<001>

Q6	The 'damper' in a 'mass-spring' vibration system serves the purpose of including the effect on the system			
	(a)	acceleration	(c)	damping factor
	(b)	damping ratio	(d)	deceleration
Q7	The analysis that attempts to determine several or all natural frequencies of a MEMS devices is called			al or all natural frequencies of a
	(a)	modal analysis	(c)	nodal analysis
	(b)	model analysis	(d)	shock analysis
Q8	Which of the following software is not related to MEMS CAD?			o MEMS CAD?
	(a)	SYNOPSYS	(c)	ANSYS
	(b)	ABAQUS	(d)	COMSOL
Q9	One major advantage of using CAD in MEMS design is the capability in			
	(a)	graphics representation of the results	(c)	obtaining fast results
	(b)	animation of the devices	(d)	fabrication of the devices
Q10	The least expensive micromanufacturing technique is			
	(a)	surface micromachining	(c)	bulk micromachining
	(b)	LIGA	(d)	SLIGA
Q11	1 The aspect ratio of a MEMS component is defined as the ratio of			ined as the ratio of
	(a)	the dimension of the surface to that of the height	(c)	the dimension in width to that of the length
	(b)	the dimension in the height to that of the width	(d)	the dimension in the height to those of the surface

Q12	Application of mechanical deformation to a piezoelectric crystal can result in the production of			
	(a)	electric resistance change	(c)	electric inductance change
	(b)	electric current change	(d)	electric voltage change
Q13	An effective way to shorten the MEMS design cycle is to			cycle is to
	(a)	use computer-aided design	(c)	use a better design method
	(b)	involve more engineers	(d)	use experimental method
	_	a · · · · · · · · · · · · · · · · · · ·		
Q14	Proc	ess flow is part of MEMS		
	(a)	manufacturing	(c)	production
	(b)	testing	(d)	design
Q15	The principle advantage of using piezoresistors is			
	(a)	small size	(c)	high sensitivity
	(b)	low cost in production	(d)	reliability
Q16	The advantage of using MEMS capacitive methods is			
	(a)	high temperature application	(c)	easy to implement
	(b)	simplicity	(d)	all of the above
Q17	The resonant vibration of a MEMS device made of elastic materials occurs whe the frequency of the excitation force any of the natural frequencies of the device.			de of elastic materials occurs when any of the natural frequencies of
	(a)	approaches	(c)	exceeds
	(b)	equals	(d)	none of the above

Q18	A vibrating beam will have its natural frequency with increased of longitudinal stress in tension			
	(a)	increased	(c)	unchanged
	(b)	decreased	(d)	none of the above
Q19	As the gap between the electrodes grows smaller, the electrostatic forces for actuation			aller, the electrostatic forces for
	(a)	grow weaker	(c)	do not change
	(b)	grow stronger	(d)	none of the above
Q20	When dealing with crystalline materials, it often becomes necessary to specify the fundamental of crystallography in atom such as			
	(a)	point coordinate	(c)	planes of atoms
	(b)	crystallographic direction	(d)	all of the above
Q21	1 Polysilicon films are used in MEMS as			
	(a)	dielectric material	(c)	electrically conducting material
	(b)	substrate material	(d)	resist material
Q22	2 Piezoelectric actuation works on the principle of			of
	(a)	electric heating	(c)	mechanical heating
	(b)	mechanical-electrical conversion	(d)	electrical-mechanical conversion

Q23	Which of the following statements is true regarding the stress parameter?			
	(a)	Shear stress is the ratio of deformation to length	(c)	Normal stress is the stress acts in a direction perpendicular to cross section
	(b)	Tensile stress as in the case of pushing along the rod	(d)	Compressive stress as in the case of pulling along the rod
Q24		achieve maximal sensitivity of a mize the	MEM	IS pressure sensor, one would
	(a)	stress	(c)	shear modulus
	(b)	strain	(d)	deformation in the diaphragm
Q25	A W	heatstone bridge is use to measure		
	(a)	electric current	(c)	electric resistance
	(b)	electric voltage	(d)	electric inductance
Q26	Which of the following is a meshing type used in the CoventorWare?			
	(a)	Manhanttan bricks	(c)	surface
	(b)	Mapped bricks	(d)	all of the above
Q27	The principal theory used in MEMS accelerometer design is			
	(a)	plate bending	(c)	strength of materials
	(b)	mechanical vibration	(d)	natural frequency
Q28	The	e deflection of the square membrane in	n MEI	MS pressure sensor is measured by
	(a)	mechanical means	(c)	magnetic means
	(b)	optical means	(d)	electrical means

BED 40503

- The signal transduction methods for MEMS pressure sensors is
 - piezoresistors (a)

(c) resonant vibrating beams

(b) capacitors

- (d) all of the above
- The market value of microsystems in intimately related to **O30**
 - volume demand (a)

(c) performance of the products

special features (b)

(d) size of the products

PART B: ANSWER ALL QUESTIONS

Define and differentiate these terminologies of microsensor and **Q31** (a) microactuator.

(4 marks)

MEMS design process basically involves of modeling, simulation and (b) experiment. Describe the importance of these processes.

(8 marks)

Figure Q31(c) shows the suspension of an electrostatic comb-drive (c) microactuator. Except for the darkly-shaded region marked as fixed, the rest of the structure is free to move above the substrate separated by a gap. Obtain the linear stifness, k of the spring structure in the y-direction for the microactuator. Given E = 150GPA, L = 200 µm, w = 5 µm and out-ofplane $t = 3 \mu m$.

(8 marks)

FIGURE Q31(c)

BED 40503

- Q32 The understanding of MEMS system dynamics is crucial for predicting performance characteristics of sensors and actuators. The system can be simplified into a mass-spring-damper system subjected to time varying input, dynamic input and sinusoidal input signals.
 - (a) Categorize the damping factor, ξ and explain why it is an important parameter to determine the transient response of a MEMS system dynamics.

(10 marks)

(b) By the aid of a diagram, define the coutte flow damping between two plates, and compute the damping coefficient of an accelerometer in which the mass area is $20000 \ \mu m^2$ with a gap of 1 μ m air between the mass and substrate, and viscosity of 2×10^{-5} Pas.

(5 marks)

- Q33 An elastic fixed-free microbeam is designed with length of 1200 μ m, width 8 μ m, thickness 4 μ m and Young's modulus of 150 Gpa.
 - (a) Compute the magnitude of maximum stress for the loading force, F which gives out-of-plane movement to the microbeam.

(3 marks)

- (b) A stiff plate of 5 mg is attached to the free-end of the microbeam. Calculate the natural frequency of the mass-spring system in Hz.

 (3 marks)
- (c) Another fixed-free microbeam with the same dimension is attached to the stiff plate as illustrated in **Figure Q33(c)**.

FIGURE Q33(c)

BED 40503

(i) Plot for g-force vs displacement for the mass-spring system for out-of-plane movement. Calculate for at least three points.

(6 marks)

(ii) Calculate the effective spring constant of the system for in-plane movement.

(3 marks)

Q34 A parallel plate capacitor is suspended by four cantilever beams, shown by **Figure Q34**. The lower electrode is connected to a voltage supply of value V = 2V, while the suspended plate is grounded. The gap between the lower electrode and the plate is $g_0 = 1.0 \mu m$.

(a) The condition of pull-in or snap-in will occur due to the electrostatic actuation. By using an appropriate diagram, explain on pull-in effect of this parallel-plate capacitive actuators.

(5 marks)

(b) Find the area A of the lower electrode in μm^2 such that the electrostatic force on the plate is 100 nN. Use $\varepsilon = 8.85 \times 10^{-12}$.

(5 marks)

(c) The four support beams are each 500 μ m long, 0.3 μ m thickness and 5 μ m wide. If the area, A of the lower electrode is equal to $1x1 \text{ mm}^2$, predict the distance between the two plates under a bias voltage of 0.3 V.

(10 marks)

- END OF QUESTION -