

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2015/2016**

COURSE NAME

: MECHANICAL SCIENCES

COURSE CODE

: BEF 25903

PROGRAMME

BACHELOR OF ELECTRICAL

ENGINEERING WITH HONOURS

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2016

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

Q1 (a) Explain the definition of moment of a force about a point and give the example of its application

(5 marks)

(b) **FIGURE Q1 (b)** shows a continuous frame ABC subjected to three 3 concentrated loadings. The frame has a fixed support at point A. Determine the moment of each of the three forces about point A.

(15 marks)

- Q2 (a) Define the following terms:
 - (i) Displacement, Δs
 - (ii) Velocity, v
 - (iii)Acceleration, a

(6 marks)

- (b) An s-t graph of bicycle moves along a straight track from rest is shown in **FIGURE Q2** (b). Knowing that s = 0 m at t = 0 s, construct:
 - (i) the *v-t* graph for the given time interval

(7 marks)

(ii) the *a-t* graph for the given time interval

(7 marks)

- Q3 (a) Define three types of forces need to consider in the kinetics of particles analysis (6 marks)
 - (b) The 80 kg crate moves on a horizontal plane with acceleration $a = 2s/t^2$ as shown in **FIGURE Q3** (b), where s is displacement. Suppose it is displaced 12 m away within 4 s time interval;
 - (i) draw the Free Body Diagram (FBD) of the system

(4 marks)

		(ii) define the acceleration, a of the crate
		(2 marks)
		(iii) determine the coefficient of kinetic friction, μ_{k}
		(8 marks)
Q4	(a)	Define the following terms and give an example for each:
		(i) Compressible fluid
		(ii) Incompressible fluid
		(4 marks)
	(b)	Explain what is manometer and list 3 common types of manometers that always used in measuring fluids pressure.
		(6 marks)
	(c)	Two chambers with water at their base are separated by a piston with a diameter of 30 cm and 25 N weight, as shown in FIGURE Q4 (c) . Calculate the gauge
		pressure in chambers A and B, if the values of $h_1 = 50$ cm and $h_2 = 25$ cm respectively.
		(10 marks)
Q5	(a)	Define the following terms and explain the relation between them.
		(i) Mass flow rates, m
		(ii) Volume flow rates, $\dot{\mathbf{v}}$
		(5 marks)
	(b)	Express the Bernoulli equation in three different ways using:
		(i) energies
		(ii) pressures
		(iii)heads
		(3 marks)

CONFIDENTIAL

BEF 25903

(c) Determine the diameter orifice, d_o if under ideal conditions the flowrate of seawater through the orifice meter shown in **FIGURE Q5(c)** is to be 0.0019 m³/s with pressure difference of $p_1 - p_2 = 16.3$ kPa. The pipe diameter is 50.8 mm and the contracta coefficient is assumed to be 0.63. Take the density of seawater as 1025 kg/m³.

(12 marks)

- Q6 (a) (i) List down and show two types of water turbines by using appropriate sketches.
 - (ii) Discuss the characteristic of these turbines in terms of head and volume flow rate

(8 marks)

(b) Water is to-be pumped from basement (point 1) to the second floor of building through the copper pipe with diameter of 1.9 cm at a flow rate of 0.000756 m³/s as shown in **FIGURE Q6(b)**. If the viscosity of water, $\mu = 1.12 \times 10^{-3} \text{ Ns/m}^2$ and the friction factor, f = 0.021, calculate the pump power required.

(12 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/ 2015/2016

PROGRAMME : BEV

COURSE NAME : MECHANICAL SCIENCES

COURSE CODE: BEF 25903

FIGURES Q1(b)

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/ 2015/2016

COURSE NAME : MECHANICAL SCIENCES

PROGRAMME : BEV

COURSE CODE: BEF 25903

FIGURES Q3(b)

FIGURES Q4(c)

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/ 2015/2016 PROGRAMME : BEV

COURSE NAME : MECHANICAL SCIENCES COURSE CODE : BEF 25903

FIGURES Q5(c)

FIGURES Q6(b)

CONFIDENTIAL

BEF 25903

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/ 2015/2016

PROGRAMME : BEV

COURSE NAME : MECHANICAL SCIENCES

COURSE CODE: BEF 25903

USEFULL FORMULAS

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + at$$

$$v = v_0 + at$$
$$v^2 = v_0^2 + 2as$$

$$\mathbf{a} = \mathbf{a}^{\mathbf{n}} + \mathbf{a}^{\mathbf{t}}$$

$$\mathbf{a}^{\mathbf{n}} = r\omega^2 = \frac{v^2}{r}$$