

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2015/2016

COURSE NAME : ENGINEERING MATHEMATICS II

COURSE CODE : BEE11403 / BWM10303

PROGRAMME : BACHELOR OF ELECTRONIC

ENGINEERING WITH HONOURS

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2016

DURATION : 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 A series RC circuit can be formulated as the following equation.

$$R\frac{dq}{dt} + \frac{q}{C} = E$$

Where q, R, C and E are the charge, the resistor, the capacitor, and the voltage supply of the circuit. When t = 0, q = 0.

- (a) Apply the separation of variables method to find the solution of q(t). (6 marks)
- (b) Apply the integrating factor of $e^{\frac{1}{RC}t}$ to find the solution of q(t). (6 marks)
- (c) Calculate the q(t) if $R = 5 \Omega$, C = 0.1F, E = 5 Volts, q(0) = 0 and q'(0) = 1 using Laplace Transform. (8 marks)
- (d) Verify the answer of Q1(c) using the equation from Q1(a) or Q1(b). (2 marks)

Q2 For a series RLC circuit that contains an electromotive force E, a resistor R, an inductor L, and a capacitor C can be represented by a general equation as follows:

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = E$$

Given E = 2t V, L = 1 H, $R = 3 \Omega$, C = 0.5 F, and initial condition of i(0) = i'(0) = 0.

- (a) Find the complementary solution of the equation, i_c . (4 marks)
- (b) Find the particular integral of the equation, i_p . (7 marks)
- (c) Find the current i(t) using $i(t) = i_c + i_p$. (7 marks)
- (d) Verify the current i(t) from **Q2(c)** using Laplace transform. (14 marks)

CONFIDENTIAL

BEE11403/BWM10303

Q3 For the following periodic signal.

$$f(t) = \begin{cases} 0 & -\pi < t < 0 \\ t^2 & 0 < t < \pi \end{cases} \text{ and } f(t) = f(t + 2\pi)$$

(a) Sketch the given function when $0 < t < 5\pi$.

(4 marks)

(b) Formulate the trigonometric Fourier coefficients of a_0 , a_n , and b_n .

(9 marks)

(c) Write out the first four terms of the Fourier Series, i.e. n = 0,1,2,3.

(6 marks)

Q4 (a) Transform t^2e^{-4t} to s domain using Laplace transform.

(4 marks)

(b) Calculate $\mathcal{L}\left\{3t-(3t+1)u(t-3)\right\}$.

(5 marks)

- (c) For $\frac{8s+13}{s^2+4s-5}$,
 - (i) Simplify this equation using partial fraction.

(4 marks)

(ii) From Q4(c)(i), transform the equation into its time domain.

(2 marks)

Q5 Show
$$y(x) = c_0 \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for $\frac{dy}{dx} - y = 0$ using power series method where $y(x) = \sum_{n=0}^{\infty} c_n x^n$. (12 marks)

- END OF QUESTION -

BEE11403/BWM10303

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME : 4 BEJ

COURSE

: ENG. MATH. 2

COURSE CODE : BEE11403/BWM10303

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Chara	Characteristic equation: $am^2 + bm + c = 0$.						
Case	The roots of characteristic equation	General solution					
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$					
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$					
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$					

Laplace Transform

f(t)	F(s)	
а	a	
	S	
e^{at}	1	
	s-a	
$\sin at$	a	
	$s^2 + a^2$	
cosat	$\frac{s}{s^2 + a^2}$	
	$s^2 + a^2$	
sinh at	$\frac{a}{s^2 - a^2}$	
	s^2-a^2	
cosh <i>at</i>	S	
	s^2-a^2	
t^n , $n = 1, 2, 3,$	$\frac{s}{s^2 - a^2}$ $\frac{n!}{n+1}$	
	S" 1	
$e^{at}f(t)$	F(s-a)	
$t^n f(t)$, $n = 1, 2, 3,$	$(1)^n d^n = F(n)$	
	$(-1)^n \frac{d^n}{ds^n} F(s)$	
H(t-a)	e^{-as}	
	S	
f(t-a)H(t-a)	$e^{-as}F(s)$	
$\delta(t-a)$	e^{-as}	
$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$	
у	Y(s)	
	sY(s) - y(0)	
<i>y</i> "	$s^2Y(s) - sy(0) - y'(0)$	
	e^{at} $\sin at$ $\cos at$ $\sinh at$ $\cosh at$ $t^{n}, n = 1, 2, 3,$ $e^{at} f(t)$ $t^{n} f(t), n = 1, 2, 3,$ $H(t - a)$ $\delta(t - a)$	

CONFIDENTIAL

BEE11403/BWM10303

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME

: 4 BEJ

COURSE

: ENG. MATH. 2

COURSE CODE : BEE11403/BWM10303

Electrical's Formulae

Voltage drop across resistor, R (Ohm's Law): 1.

2. Voltage drop across inductor, L (Faraday's Law): $v_L = L \frac{di}{dt}$

Voltage drop across capacitor, C (Coulomb's Law): 3.

 $v_C = \frac{1}{C} \int i \ dt$

The relation between current, i and charge, q:

 $i = \frac{dq}{dt}.$

Fourier Series

	Fourier series expansion of periodic function	Half Range series
	with period 2π	2 1
	$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$	$a_0 = \frac{2}{L} \int_0^L f(x) dx$
		$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$
	$u_n 1$ $f(x) \cos nx \ ax$	~ 12
	1	$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$
	$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$	L
	$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$	$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$
- 1	And 21-1 20-1	

Table of Fourier Transform (Fourier Transform Pairs)						
f(t)	$F(\omega)$	f(t)	$F(\omega)$			
$\delta(t)$	1	sgn(t)	$\frac{2}{i\omega}$			
$\delta(t-\omega_0)$	$e^{-i\omega_0\omega}$	H(t)	$\frac{\overline{i\omega}}{\pi\delta(\omega) + \frac{1}{i\omega}}$			
1	$2\pi\delta(\omega)$	$e^{-\omega_0 t}H(t)$ for $\omega_0 > 0$	$\frac{1}{\omega_0 + i\omega}$			
$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$t^n e^{-\omega_0 t} H(t)$ for $\omega_0 > 0$	$\frac{n!}{(\omega_0 + i\omega)^{n+1}}$			
$\sin(\omega_0 t)$	$i\pi \left[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)\right]$	$e^{-at}\sin(\omega_0 t)H(t)$ for $a>0$	$\frac{\omega_0}{(a+i\omega)^2+{\omega_0}^2}$			
$\cos(\omega_0 t)$	$\pi \big[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \big]$	$e^{-at}\cos(\omega_0 t)H(t)$ for $a > 0$	$\frac{a+i\omega}{(a+i\omega)^2+{\omega_0}^2}$			
$\sin(\omega_0 t)H(t)$	$\frac{\pi}{2}i[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$					
$\cos(\omega_0 t)H(t)$	$\frac{\pi}{2} \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right] +$	$-\frac{i\omega}{\omega_0^2-\omega^2}$				