

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2015/2016**

COURSE NAME

: ELECTRICAL TECHNOLOGY

COURSE CODE : BEE 10403

PROGRAMME

: BACHELOR OF ELECTRONIC

ENGINEERING WITH HONOURS

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2016

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

Q1	For a if the	Δ - Δ balanced system with line to line voltage of V_{ab} = 173V and load of Z_{Δ} = 30+j10 Ω , source voltages are in positive sequence. Investigate
	(a)	The phase and line currents. (15 marks)
	(b)	Total average power, total reactive power and total complex power at the source.
		(10 marks)
Q2	and a	sed magnetic circuit of cast steel contains a 7cm long path of cross-sectional area 1.5cm ² . 2cm long path of cross-sectional area 0.5cm ² . A coil of 300 turns is wound around the ength of the circuit and generated a current of 0.5A. The relative permeability of the cast is 850 H/m.
	(a)	Calculate the reluctance in the 7cm cast steel.
		(8 marks)
	(b)	Determine the total reluctance in the closed magnetic circuit of cast steel.
	()	(9 marks)
	(c)	Investigate the flux density in the 7cm path.
		(8 marks)
Q3	A 5kV voltag	VA, 200V / 100V, 50Hz, single phase ideal two winding transformer is used to step up a ge of 200V to 300V by connecting it as an auto transformer.
	(a)	Show the connection diagram of the auto transformer that is used to step up a voltage of 200V to 300V with all important labels of V_L , I_L , V_{SE} , V_C , I_H , and V_H .
		(6 marks)
	(b)	Calculate the maximum kVA that can be handled by the autotransformer (without over loading any of the HV and LV coil).
		(10 marks)
	(c)	Investigate the kVA that is transferred magnetically and the kVA that is transferred by electrical conduction.
		(8 marks)

CONFIDENTIAL

BEE10403

Q4	(a)	AC m	machines can be categorized as AC motors and AC generators. Describe		
		(i)	The differences between AC motor and AC generator.		
				(2 marks)	
		(ii)	(ii) Two (2) methods to increase the turning force (or torque) of a DC		
				(2 marks)	
		(iii)	Two (2) disadvantages of a DC machine.	(2 marks)	
(b) A 24V shunt DC motor in Figure Q4(b) has an armature resistant field resistance of 100Ω. At no load, the motor takes a line currer running at 2500rpm. If the line current at full load is 4A,					
		(i)	Estimate the field current and the induced voltage with no load.		
				(6 marks)	
		(ii)	Estimate the full load speed and the speed regulation of the DC motor	or.	
				(8 marks)	
	(c) Explain briefly about				
		(i)	The working principle of synchronous motor.	(3 marks)	
		(ii)	The differences between synchronous machine and induction machin	ne.	
				(2 marks)	

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME

: 4 BEJ

: ELECTRICAL TECHNOLOGY

COURSE CODE

: BEE10403

List of Formula and Constant

1. $\beta = \mu H$

(unit: Tesla, T)

2. $mmf(or F_m) = NI = H/l$ (unit: Ampere-turns, At)

3. $S(or R) = l/\mu A = mmf/\phi$ (unit: Ampere-turns/weber, At/Wb)

4. $\phi_{max} = B_{max} \alpha_{area}$

(unit: Weber, Wb)

5. $E = 4.44 f N \phi_m$

(unit: Volt, V)

6. $a = \frac{v_p}{v_e} = \frac{e_p}{e_s} = \frac{N_p}{N_s}$

(unit: -)

Permeability of vacuum $\mu_o = 4\pi x 10^{-7} Wb/At. m (or H/m)$