

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2014/2015**

COURSE NAME : ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE : BEF 12403

PROGRAMME

: BACHELOR OF ELECTRICAL

ENGINEERING WITH HONOURS

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

CONFIDENTIAL

BEF 12403

Q1	(a)	With the aid of appropriate mathematical expression, describe electric current electric potential different and energy for an element in a circuit.	
		electric potential different and energy for an element in a circuit.	(6 marks)
	(b)	A charge flowing in a wire is plotted in Figure Q1(b) . Sketch the corresp current in the wire.	onding
			(6 marks)
	(c)	Calculate the power supplied or power absorbed by each element in Figu	re Q1(c). (8 marks)
Q2	(a)	Determine the equivalent static resistance, R_{eq} and current, I_o for the c Figure Q2(a).	circuit in
			(6 marks)
	(b)	Solve the current flowing through the 8 Ω resistor in Figure Q2(b).	(6 marks)
	(c)	i) State the definition of <i>supernode</i> that is used in circuit analysis.	(2 marks)
		ii) Calculate V_1 and V_2 in the circuit shown in Figure Q2(c) using nodal a	analysis. (6 marks)
Q3	(a)	In mesh analysis, explain the decision of using mesh currents instead of	
		currents as the circuit variables.	(2 marks)
	(b)	Evaluate currents I_1 , I_2 , and I_3 using mesh analysis for the circuit in Figure	re Q3(b). (8 marks)
	(c)	Establish the mesh-current equations by inspection for the circuit in b Q3(c).	by Figure
			(10 marks)

CONFIDENTIAL

BEF 12403

- Q4 (a) By using superposition method, determine i_o for the circuit in Figure Q4(a). (13 marks)
 - (b) Establish the Norton equivalent circuit at terminal *a-b* for circuit in **Figure Q4(b)**. (7 marks)
- Q5 (a) Define the meaning of 'maximum power transfer' (2 marks)
 - (b) Find the Thevenin equivalent circuit of the circuit in **Figure Q5(b)** to the left of terminal *a-b*. Hence, evaluate the current through the $R_L = 6 \Omega$ and $R_L = 36 \Omega$ (11 marks)
 - (c) Determine the value R_L that will draw the maximum power for the circuit in **Figure Q5(c)**. Hence, calculate the maximum power. (7 marks)

- END OF QUESTIONS -

SEMESTER/SESSION: II/2014/2015

PROGRAMME

: BEV

COURSE NAME : ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE

: BEF 12403

FIGURE Q1(b)

FIGURE Q1(c)

SEMESTER/SESSION: II/2014/2015

PROGRAMME

: BEV

COURSE NAME : ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE

: BEF 12403

FIGURE Q2(b)

FIGURE Q2(c)

BEF 12403

FINAL EXAMINATION

SEMESTER/SESSION: II/2014/2015

PROGRAMME

: BEV

COURSE NAME : ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE

: BEF 12403

FIGURE Q3(b)

FIGURE Q3(c)

SEMESTER/SESSION: II/2014/2015

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS I

PROGRAMME

: BEV

COURSE CODE

: BEF 12403

FIGURE Q4(a)

FIGURE Q4(b)

FIGURE Q5(b)

SEMESTER/SESSION: II/2014/2015

PROGRAMME

: BEV

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE

: BEF 12403

FIGURE Q5(c)