

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2014/2015**

COURSE NAME

: CONTROL SYSTEM THEORY

COURSE CODE

: BEH 30603

PROGRAMME

BACHELOR OF ELECTRONIC **ENGINEERING WITH HONOURS**

EXAMINATION DATE : JUNE 2015/JULY 2015

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

Q1	The pitch control loop for a ship is shown in Figure Q1 . Let $K_2=1$.			
	(a)		It the value of K_1 that ensures that the closed-loop pirm is critically stable.	tch control (12 marks)
	(b)		d on the characteristic equation of the system and K_1 obta matlab codes to find the roots of the closed-loop system.	ined in (a), (4 marks)
	(c) Determine the steady state error of the closed-loop syste Assume $K_1=1$.		rmine the steady state error of the closed-loop system for a me K_1 =1.	step input. (4 marks)
Q2	(a)	State	the five rules to sketch a root locus.	(5marks)
(b) Consider the system shown in Figure Q		Consi	ider the system shown in Figure Q2(b).	
		(i)	Sketch the root locus of the system.	(6 marks)
		(ii)	Find the departure angle.	(3 marks)
		(iii)	Find the range of <i>K</i> for the system to be stable.	(3 marks)
		(iv)	Choose the value of K when the system is critically stable	e. (1 marks)
		(v)	Find the closed-loop poles for the value of K in (iv)	(2 marks)

- Consider the unity feedback control system as shown in Figure Q3. Q3
 - Draw the Bode log-magnitude and phase plots of the forward transfer (a) function. *Hint:* ζ =0.2

(14 marks)

- (b) If K=100, find the system's:
 - (i) Bandwith

(2 marks)

Phase margin (ii)

(2 marks)

(iii) Gain margin

(2 marks)

- **Q4** (a) Explain the purpose of
 - (i) Phase-lag compensator

(2 marks)

Phase-lead compensator (ii)

(2 marks)

A unity feedback open-loop transfer function of a control system is given (b) by

$$G(s) = \frac{12}{s(s+3)}$$

Design a phase-lead compensator that gives $\omega_n = 5$ rad/sec and $\zeta=0.4$. (16 marks) Q5 Design a phase variable feedback gains to yield 5% overshoot and a peak time of 0.3 seconds for a plant represented in the state space below:

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -36 & -15 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 100 & 100 & 0 \end{bmatrix} x$$

(20 marks)

-END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2014/2015

PROGRAMME : 3 BEJ

: CONTROL SYSTEM THEORY **COURSE**

COURSE CODE: BEH 30603

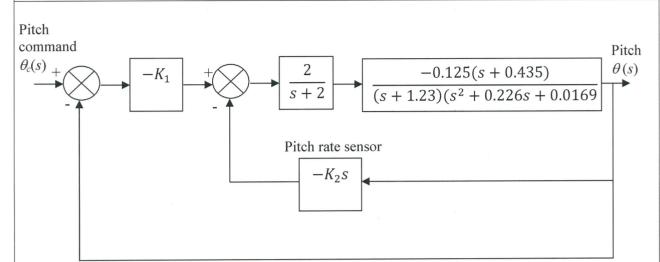


FIGURE Q1

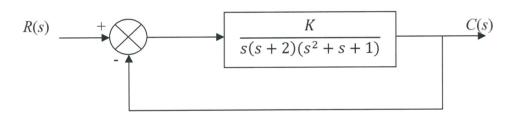


FIGURE Q2(b)

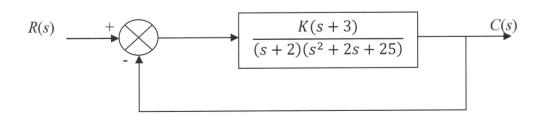


FIGURE Q3

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2014/2015 PROGRAMME : 3 BEJ COURSE : CONTROL SYSTEM THEORY COURSE CODE : BEH 30603

TABLE 1 Laplace transform table.

f(t)	F(s)
$\frac{f(t)}{\delta(t)}$	1
u(t)	1
	S
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{-at}u(t)$	$\frac{1}{s+a}$
$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$

TABLE 2 Laplace transform theorems.

Name	Theorem
Frequency shift	$\mathscr{L}\left[e^{-at}f(t)\right] = F(s+a)$
Time shift	$\mathscr{L}[f(t-T)] = e^{-sT}F(s)$
Differentiation	$\mathcal{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{k-1}(0^-)$
Integration	$\mathscr{L}\left[\int_{0^{-}}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s}$
Initial value	$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$
Final value	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2014/201

PROGRAMME : 3 BEJ

COURSE

: CONTROL SYSTEM THEORY

COURSE CODE: BEH 30603

TABLE 3 2nd order prototype system equation.

$\frac{C(s)}{R(s)} = \frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2}$	$T_r = \frac{\pi - \cos^{-1} \zeta}{\omega_n \sqrt{1 - \zeta^2}}$
$\mu_p = e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}}$	$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$
$T_s = \frac{4}{\zeta \omega_n}$ (2% criterion)	$T_s = \frac{3}{\zeta \omega_n} $ (5% criterion)