

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2014/2015

COURSE NAME

: SIGNALS & SYSTEMS

COURSE CODE

: BEB 20203

PROGRAMME

: BEJ

EXAMINATION DATE : DECEMBER 2014/ JANUARY 2015

DURATION

: 3 HOURS

INSTRUCTION

SECTION A: ANSWER ALL QUESTIONS

SECTION B: ANSWER THREE (3)

QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF FIFTEEN (15) PAGES

SECTION A: ANSWER ALL QUESTIONS

- Q1 (a) Given g(t) in Figure Q1 (a). Express g(t) as sum of triangle (tri) and unit step function. Sketch both triangle function and unit step function. (4 marks)
 - (b) Signal x(t) in Figure Q1 (b) is applied to an amplifier that has a gain of 3 and introduces a bias of -1 as shown in Figure Q1 (c). Sketch the amplifier output signal, y(t).
- Q2 (a) Test whether the signal $x(t) = 2\cos\left(10\pi t + \frac{\pi}{6}\right)$ is periodic or not. If the signal is periodic determine its fundamental period.

(3 marks)

(b) The non-zero Fourier series coefficients in exponential form of a continuous-time periodic signal f(t) with fundamental time period T=8 are

$$F_1 = F_{-1}^* = 2$$
, $F_3 = F_{-3}^* = 4j$.

- (i) Find the fundamental frequency.
- (ii) Write the exponential signal equation.
- (iii) Express the signal in sinusoidal form.

(4 marks)

(b) Calculate the average power supplied to a network if the applied voltage and resulting current are given by

$$v(t) = 100 \sin 30t + 80 \sin 60t + 40 \sin 90t \text{ (Volts)}$$

$$i(t) = 12 \sin(30t + 65^{\circ}) + 20 \sin(60t + 45^{\circ}) + 15 \sin(90t + 25^{\circ}) \text{ (Amperes)}$$

(3 marks)

- Q3 (a) A non-periodic input signal of a high pass filter is written as w(t) = u(t+2) 3u(t) + 2u(t-2).
 - (i) Sketch f(t) = w(-t)

(2 marks)

(ii) Derive $F(\omega)$ using the definition of Fourier Transform.

(6 marks)

(b) Explain the duality property of Fourier transform with the aid of a simple example.

(2 marks)

Q4 (a) Figure Q4 (a) shows a LTI system. Determine the Laplace transform of the system using the properties of Laplace transform.

(4 marks)

(b) Investigate the causality and the stability of a LTI system with the system function

$$H(s) = \frac{s-1}{(s+1)(s-2)}.$$

(6 marks)

SECTION B: ANSWER THREE (3) QUESTIONS ONLY

- Q5 (a) The output of the system given in Figure Q5(a) is y(t) = x(t)u(t). Determine whether the system is
 - (i) Linear or non linear
 - (ii) Time variant or time invariant

Show all the required steps in your assessment of the system.

(4 marks)

(b) Impulse response for LTI system is h(t)=1, for $-1 \le t \le 2$. This system is used in modeling of digital to analog convertor. The input signal of the system is specified as

$$x(t) = 2e^{-0.5t}u(t)$$

Determine the output of the system y(t) using graphical method of convolution signal.

(16 marks)

- Q6 (a) The Fourier series of a periodic function f(t) is a representation that resolves f(t) into the dc component and ac components comprising an infinite series of harmonic sinusoids.
 - (i) explain the definition of a periodic function.
 - (i) Define **TWO** (2) applications of Fourier series in electrical field.

(4 marks)

- (b) Consider a single sinusoidal signal which is $v(t) = 10\cos 2\pi 1000t \text{ V}$.
 - (i) Convert the signal into exponential Fourier series form; and
 - (ii) Draw the spectrum.

(4 marks)

(c) Given a periodic signal shown in **Figure Q6(c)**. Determine the trigonometric Fourier series for the given signal.

(12 marks)

- Q7 (a) The impulse responses of two cascaded Linear Time Invariant (LTI) system as shown in **Figure** Q7(a) are $h_{1(t)} = 3\delta(3t 6)$ and $h_2(t) = e^{-5t}u(t)$ respectively. The input signal to the system is $x(t) = e^{-2t}u(t)$. By using appropriate properties of Fourier Transform,
 - (i) determine the total Frequency Response, $H_T(\omega)$ of the system above (5 marks)
 - (ii) compute the output response, y(t).

(10 marks)

- (b) Determine the total energy dissipated by a resistor in a RC circuit using **Parseval's Relation** if the voltage across the 2- Ω resistor is given by $v_R(t) = 10 \ e^{-2t} u(t) \ V$. [Hint: $\int_{-\infty}^{+\infty} |x(t)|^2 \ dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 \ d\omega$] (5 marks)
- Q8 (a) Consider the following LTI system as shown in **Figure Q8(a)**. The system has a response of $H_1(s) = \frac{s}{(s+1)(s+a)}$ and $H_2(s) = \frac{b}{s}$, respectively.
 - (i) Determine a and b such that the overall transfer function is

$$H(s) = \frac{s}{(s+4)(s+5)}$$

(5 marks)

(ii) Determine the output y(t) of the system with the above transfer function to the unit-step input x(t)=u(t).

(5 marks)

(b) A series RLC circuit is illustrated in **Figure Q8(b)**. The relationship between the input and the output can be written in the form of differential equation which is

$$RCy' + LCy'' + y(t) = x(t).$$

Given that the values of of R, L and C are 2 Ω , 1 H, 2 F respectively, determine using Laplace Transform,

(i) Impulse response of the system circuit, h(t).

(5 marks)

(ii) Output response, y(t) for $x(t) = e^{-2t}u(t)$.

(5 marks)

END OF QUESTIONS -

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS COURSE CODE: BEB 20203

Figure Q1(a)

Figure Q1(b)

Figure Q1(c)

SEMESTER/SESSION: SEMESTER I/2014/2015

COURSE NAME: SIGNALS AND SYSTEMS

PROGRAMME: BEJ

Figure Q4(a)

Figure Q6(c)

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS

Figure Q7(a)

Figure Q8(a)

Figure Q8(b)

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS

COURSE CODE: BEB 20203

INDEFINITE INTEGRALS

$$\int \cos at \ dt = \frac{1}{a} \sin at$$

$$\int \sin at \ dt = -\frac{1}{a} \cos at$$

$$\int t \cos at \ dt = \frac{1}{a^2} \cos at + \frac{1}{a} t \sin at$$

$$\int t \sin at \ dt = \frac{1}{a^2} \sin at - \frac{1}{a} t \cos at$$

$$\int \frac{1}{a^2 + x^2} \ dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

EULER'S IDENTITY

$$e^{\pm j\pi/2} = \pm j \quad ; \qquad A \angle \pm \theta = Ae^{\pm j\theta}$$

$$e^{\pm jk\pi} = \cos(k\pi) \quad ; \qquad e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

$$\cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right) \quad ; \qquad \sin\theta = \frac{1}{j2} \left(e^{j\theta} - e^{-j\theta} \right)$$

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS

COURSE CODE: BEB 20203

FOURIER SERIES

Exponential	$x(t) = \sum_{n = -\infty}^{\infty} x_n e^{jn\frac{2\pi}{T}t}$
	$x_n = \frac{1}{T} \int_{\alpha}^{\alpha + T} x(t) e^{-jn\frac{2\pi}{T}t}$
Trigonometric	$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n \frac{2\pi}{T} t + b_n \sin n \frac{2\pi}{T} t$
	$a_n = \frac{2}{T} \int_{\alpha}^{\alpha + T} x(t) \cos n \frac{2\pi}{T} t$ $b = \frac{2}{T} \int_{\alpha}^{\alpha + T} x(t) \sin n \frac{2\pi}{T} t$
	$b = \frac{2}{T} \int_{\alpha}^{\alpha + T} x(t) \sin n \frac{2\pi}{T} t$

FOURIER TRANSFORM

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

INVERSE FOURIER TRANSFORM

$$x(t) = F^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$

LAPLACE TRANSFORM

$$\mathcal{L}(x(t)) = X(s) = \int_0^\infty x(t)e^{-st}dt$$

INVERSE LAPLACE TRANSFORM

$$x(t) = \mathcal{L}^{-1}(X(s)) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$$

SEMESTER/SESSION: SEMESTER I/2014/2015 COURSE NAME: SIGNALS AND SYSTEMS PROGRAMME: BEJ COURSE CODE: BEB 20203

TABLE 1: Trigonometric Identities

Trigonometric identities				
$\sin \alpha = \cos (\alpha - \frac{\pi}{2})$	$\cos \alpha = \sin(\alpha + \frac{\pi}{2})$			
$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta$ $\pm \cos \alpha \sin \beta$	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta$ \(\pi \sin \alpha \sin \beta\)			
$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\cos 2\alpha = 2\cos^2 \alpha - 1$			
$\cos 2\alpha = 1 - 2\sin^2 \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$			

TABLE 2: Values of cosine, sine and exponential functions for integral multiple of π

Value		
Value		
1		
0		
0		
$(-1)^n$		
0		
(, , , , , ,)		
$\int (-1)^{n/2}$, $n = even$		
$\begin{cases} (-1)^{n/2}, & n = even \\ 0, & n = odd \end{cases}$		
$\begin{cases} (-1)^{(n-1)/2}, & n = odd \\ 0, & n = even \end{cases}$		
0 , $n = even$		
1		
$(-1)^n$		
$\left((-1)^{n/2} \right), n = even$		
$\begin{cases} (-1)^{n/2} &, n = even \\ j(-1)^{(n-1)/2} &, n = odd \end{cases}$		

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS

TABLE 3: Fourier Transform Pairs

Time domain, $f(t)$	Frequency domain, $F(\omega)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$u(t+\tau)-u(t-\tau)$	$2\frac{\sin\omega\tau}{\omega}$
t	$\frac{-2}{\omega^2}$
$\operatorname{sgn}(t)$	$ \frac{\omega}{-2} \\ \frac{\omega^2}{\omega^2} \\ \frac{2}{j\omega} $
$e^{-ct}u(t)$	$\frac{1}{\alpha + j\omega}$
$e^{ct}u(-t)$	$\frac{1}{\alpha - j\omega}$
$t^n e^{-ct} u(t)$	$\frac{n!}{(\alpha+j\omega)^{n+1}}$
$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
$e^{j\omega_o t}$	$2\pi\delta(\omega-\omega_o)$
$\sin \omega_o t$	$j\pi \left[\delta(\omega+\omega_o)-\delta(\omega-\omega_o)\right]$
$\cos \omega_o t$	$\pi \left[\delta(\omega + \omega_o) + \delta(\omega - \omega_o) \right]$
$e^{-\alpha t}\sin\omega_o t u(t)$	$\frac{\omega_o}{\left(\alpha+j\omega\right)^2+\omega_o^2}$
$e^{-\alpha t}\cos\omega_o t u(t)$	$\frac{\alpha + j\omega}{\left(\alpha + j\omega\right)^2 + \omega_o^2}$

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS

TABLE 4: Fourier Transform Properties

Property	Time domain, $f(t)$	Frequency domain, $F(\omega)$	
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$	
Scaling	f(at)	$\frac{1}{ a }F(\frac{\omega}{a})$	
Time Shift	f(t-a)	$e^{-j\omega a}F(\omega)$	
Frequency Shift	$e^{j\omega_o t}f(t)$	$F(\omega-\omega_o)$	
Modulation	$\cos(\omega_0 t) f(t)$	$\frac{1}{2} [F(\omega + \omega_o) + F(\omega - \omega_o)]$	
Time Differentiation	$\frac{\frac{df}{dt}}{\frac{d^n f}{dt^n}}$	$j\omega F(\omega)$ $(j\omega)^n F(\omega)$	
Time Integration	$\int_{-\infty}^t f(t)dt$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$	
Frequency Differentiation	$t^n f(t)$	$j^n \frac{d^n}{d\omega^n} F(\omega)$	
Reversal	f(-t)	$F(-\omega) \text{ or } F^*(\omega)$	
Duality	F(t)	$2\pi f(-\omega)$	
Convolution in t	$f_1(t) * f_2(t)$	$F_1(\omega)F_2(\omega)$	
Convolution in ω	$f_1(t)f_2(t)$	$F_1(\omega) * F_2(\omega)$	

SEMESTER/SESSION: SEMESTER I/2014/2015

PROGRAMME: BEJ

COURSE NAME: SIGNALS AND SYSTEMS

x(t), t>0	ABLE 5: Laplace Transform $X(s)$	ROC
$\delta(t)$	1	Alls
u(t)	$\frac{1}{s}$	Re(s) > 0
t	$\frac{1}{s^2}$	Re(s) > 0
t^n	$\frac{n!}{s^{n+1}}$	Re(s) > 0
e^{-at}	$\frac{1}{s+a}$	Re(s) > -a
te^{-at}	$\frac{1}{(s+a)^2}$	Re(s) > -a
cos bt	$\frac{s}{s^2+b^2}$	Re(s) > 0
sin bt	$\frac{b}{s^2+b^2}$	Re(s) > 0
$e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$	Re(s) > -a
e ^{−at} sin bt	$\frac{b}{(s+a)^2+b^2}$	Re(s) > -a
tcos bt	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	Re(s) > 0
tsin bt	$\frac{2bs}{(s^2+b^2)^2}$	Re(s) > 0
tsin bt	$\frac{2bs}{(s^2+b^2)^2}$	Re(s) > 0

SEMESTER/SESSION: SEMESTER I/2014/2015 COURSE NAME: SIGNALS AND SYSTEMS PROGRAMME: BEJ COURSE CODE: BEB 20203

TABLE 6: Laplace Transform Properties

		Laplace	nog
Property	Signal	Transform	ROC
	x(t)	X(s)	R
	$x_1(t)$ $x_2(t)$	$X_1(s)$ $X_2(s)$	R_1 R_2
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$

Initial- and Final-Value Theorems

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

If x(t) = 0 for t < 0 and x(t) has a finite limit as $t \longrightarrow \infty$, then

$$\lim_{t\to\infty}x(t)=\lim_{s\to0}sX(s)$$