

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2013/2014

COURSE NAME : ELECTRONIC CIRCUITS

ANALYSIS AND DESIGN

COURSE CODE : BEL 30403

PROGRAMME

: BEJ

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

Q1 (a) The circuit in Figure Q1(a) is a non-inverting linear combination circuit. Prove that the output voltage V_o is given by:

$$V_o = \frac{(R_3 + R_4)}{R_3(R_1 + R_2)} (R_2 V_1 + R_1 V_2)$$

(6 marks)

- (b) The first op-amp (A_1) in Figure $\mathbf{Q1}(\mathbf{b})$ is acting as an oscillator. The output of this op-amp is used as the input for the second op-amp (A_2) . Both op-amps use a positive feedback concept.
 - (i) Briefly explain the function of the two feedback loop that connected to positive and negative input of op amp A₁. State the name of this oscillator.

(4 marks)

(ii) Determine the value for resistors R_1 and R_2 so that the waveform of V_{01} has a frequency of 1 kHz.

(4 marks)

(iii) Draw and completely label both output waveforms of V_{01} and V_{02} . Clearly show the relationship between these two waveforms.

(6 marks)

- Q2 (a) The circuit in Figure Q2 (a) is used in sensor conditioning circuits. It is a filter circuit as well as an integrator.
 - (i) Determine the cutoff frequency and gain in dB of this filter.

(4 marks)

(ii) Draw and label clearly the frequency response of this filter. Comment on the frequency response.

(4 marks)

(iii) Describe when will this circuit acts as an integrator.

(3 marks)

(b) An amplifier system without feedback has specifications as follows:

Open loop gain, A = 100, Input impedance, $Z_i = 50 \text{ k}\Omega$, Output impedance, $Z_o = 2.5 \text{ k}\Omega$, Feedback factor = 0.1

BEL 30403

Determine the closed-loop gain (A_f) , input impedance (Z_{if}) and output impedance (Z_{of}) for the amplifier with:

(i) voltage shunt feedback

(3 marks)

(ii) current series feedback

(3 marks)

(iii) current shunt feedback

(3 marks)

- Q3 Refer to the timer circuit shown in Figure Q3 (a). Given $R_A = 22 \text{ k}\Omega$, $R_B = 47 \text{ k}\Omega$ and C = 100 nF.
 - (a) Find the length of time when the LED is on and when the LED is off.
 (3 marks)
 - (b) Determine the oscillation frequency and duty cycle of the output waveform.

(4 marks)

- (c) If the timer output pin from the Figure Q3 (a) is connected to the circuit shown in Figure Q3 (c),
 - (i) draw the output waveform of the timer for the first two cycles. (3 marks)
 - (ii) determine the output waveform of the op-amp (V_{02}) . Assume initially V_{02} is zero. The op-amp has the saturation voltage at ± 10 V. Illustrate and label clearly the relationship between the timer output waveform and V_{02} .

(10 marks)

Q4 Design a simple DC power supply consisting of a centre-tapped transformer (12V-0-12V), a two-diode rectifier and a capacitor as filter with the following specifications:

Output current, $I_{o(max)} = 0.1 \text{ A}$ Ripple voltage, $V_{r(p-p)} = 0.5 \text{ V}$ Forward diode voltage, $V_{diode} = 0.7 \text{ V}$ Mains supply = 240 V, 50 Hz

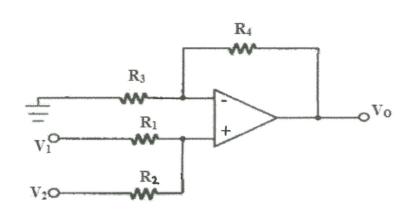
(a) Draw and label the DC power supply circuit.

(4 marks)

BEL 30403

(b)	Sketch the output waveform and label (with values) the output voltage, V_{dc} and ripple voltage, V_r .		
			(5 marks)
(c)		adjustable output voltage regulator as shown in Figure cted to the output of the DC power supply circuit from p nine:	- \ /
	(i)	the required transformer turns ratio	(4 marks)
	(ii)	the filter capacitor value	(3 marks)
	(iii)	the output range of this simple power supply. The value be varied from 0 to 1 k Ω . Assume that $I_{adj} = 7$ mA and R	
(a)	Describe TWO (2) differences between a linear regulator and a switching regulator.		
	(4 m		(4 marks)
(b)	Figure Q5 (b) is a zener follower regulator. From the figure, calculate:		
	(i)	the output voltage, V_o and current across the load, I_L .	(5 marks)
	(ii)	the transistor power dissipation, P_Q .	(5 marks)
(c)	_	Q5 (c) is a LC feedback oscillator. Determine the value onents (L and R_F) for it to oscillate at 50 kHz.	lue of the

Q5.


- END OF QUESTION-

(6 marks)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRONIC CIRCUITS ANALYSIS AND DESIGN PROGRAMME : BEJ COURSE CODE: BEL 30403

FIGURE Q1 (a)

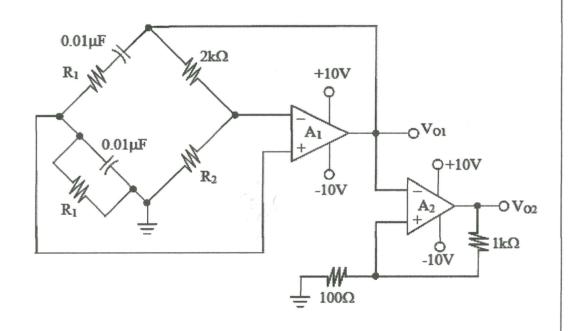
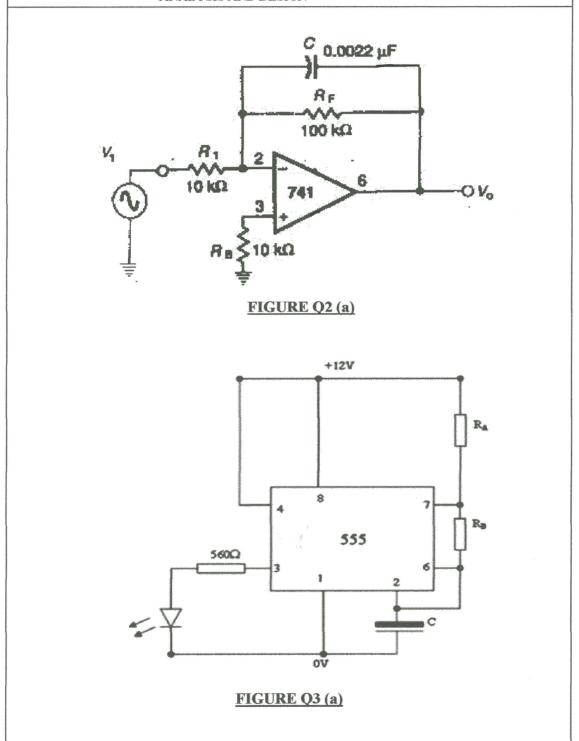


FIGURE Q1 (b)


SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME : ELECTRONIC CIRCUITS

ANALYSIS AND DESIGN

PROGRAMME: BEJ

COURSE CODE: BEL 30403

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRONIC CIRCUITS ANALYSIS AND DESIGN PROGRAMME: BEJ

COURSE CODE: BEL 30403

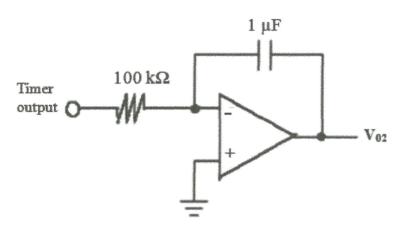
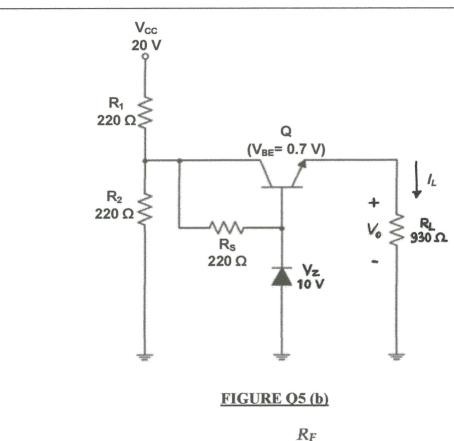


FIGURE Q3 (c)




FIGURE Q4 (c)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRONIC CIRCUITS ANALYSIS AND DESIGN PROGRAMME: BEJ

COURSE CODE: BEL 30403

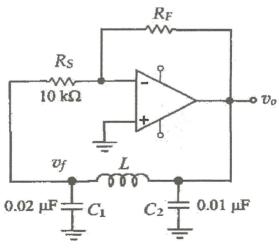


FIGURE Q5 (c)