

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2013/2014

COURSE NAME

: ELECTRONIC CIRCUIT THEORY

COURSE CODE

: BEF 12603

PROGRAMME

: BEV

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: A) ANSWER ALL FOUR (4)

QUESTIONS.

B) ANSWER ONE (1) QUESTION.

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

CONFIDENTIAL

SECTION A

Q1 (a) Figure Q1(a) shows an I-V characteristics of a pn junction diode. Construct a piece wise linear (PWL) model of this pn junction diode.

(3 marks)

- (b) Diodes D_1 and D_2 of the circuit shown in Figure **Q1(b)** are having the same I-V characteristics as the one indicated in Figure **Q1(a)**. Using the PWL diode model obtained in Q1(a),
 - (i) Calculate the currents I_1 and I_2 , and the voltage, V_0 if V_s is 5 V (8 marks)
 - (ii) Calculate the currents I_1 and I_2 , and the voltage, V_0 is V_s is -5 V. (4 marks)
- (c) If the I-V characteristics of diodes D_1 and D_2 are similar to those of ideal pn junction diodes, calculate the new values of I_1 , I_2 and V_0 when V_s is 5 V.

(5 marks)

Q2 (For Q2, the voltage transfer characteristic curve, the input signal and output signal must be drawn on a graph paper).

The zener diode, Z_D in the regulator circuit shown in Figure **Q2** has the PWL parameters as follow:

$$V_F = 0 \text{ V};$$
 $R_F = 0 \Omega$
 $V_{ZK} = 6 \text{ V};$ $R_Z = 0 \Omega$

(a) Modify the circuit in Figure **Q2** to include PWL model that represents the zener diode, Z_D as indicated above.

(2 marks)

(b) Analyse the circuit of Figure **Q2** to determine the transition voltages and fill-in the values in Table **Q2**. Plot the graph of the voltage transfer characteristic (V_o versus V_s for this circuit from $V_s = -10$ V to 10 V and label the transition voltages).

(10 marks)

(c) If the input signal, $V_s = 10 \sin(100 \pi t)$ V, draw the input waveform, V_s and output waveform, V_o for one complete cycle.

(8 marks)

Q3 (a) Explain three operation modes available for bipolar junction transistor (BJT) and the conditions required to operate in these modes.

(3 marks)

- (b) Circuit in Figure Q3 is used to control the lighting of a LED. When the input signal, V_i is at 5 V, LED is lit; else it will be turned off. Assume that the LED requires 5 mA current for full brightness and drops about 1.8 V. The controller circuit using a BJT transistor type which β is specified to be in the range of 50 to 150.
 - (i) Compute the value of R_C . Calculate the voltage across R_C when the LED is lit. Also calculate the voltage across R_C when the LED is OFF.

(7 marks)

(ii) Propose the value of R_B to guarantee the circuit remains in the saturation mode.

(6 marks)

(iii) Explain how your answer in **Q2(i)** and **Q2(ii)** fulfil its operation in controlling the LED's lighting.

(4 marks)

- Q4 (a) With the aid of a diagram, describe the importance of quiescent points to be in the middle of the DC load line for BJT transistor amplifier circuit.

 (4 marks)
 - (b) The amplifier circuit shown in Figure **Q4** is used to amplify the audio signals. The three capacitors have infinite capacitances.
 - (i) Draw the small-signal equivalent circuit of the amplifier circuit. (6 marks)
 - (iii) Calculate the voltage gain, A_V , the current gain, A_i and the overall gain, A_{VT} .

(10 marks)

SECTION B

Q5 (a) State the assumption(s) made in modelling the ideal operational amplifiers in terms of its gain and voltage(s).

(4 marks)

- (b) Circuit in Figure **Q5** is an operational amplifier used to perform a type of mathematical operation.
 - (i) Derive the expression of the output voltage, Z in terms of inputs A, B and C.

(6 marks)

- (ii) Determine the output voltage, Z for the following scenarios:
 - Case 1 the values of A, B and C are 2 V, -3 V and 4 V respectively.
 - Case 2 the values of A, B and C are 3 V, 3 V and 5 V respectively.

(7 marks)

(iii) If the feedback resistor is doubled of the present value, deduce the new expression of the output, Z in terms of inputs A, B and C.

(3 marks)

Q6 (a) State the assumption(s) made in modelling the ideal operational amplifiers in terms of its impedance values.

(4 marks)

- (b) Circuit in Figure **Q6** is an operational amplifier used to perform a type of mathematical operation.
 - (i) Derive the expression of the output voltage, $v_o(t)$ in terms of input signal, $v_i(t)$.

(5 marks)

(ii) If the input signal, $v_i(t) = 10 \sin(100\pi t)$ V, draw both the input waveform, $v_i(t)$ and output waveform, $v_o(t)$ for one complete cycle. Label the diagram clearly.

(8 marks)

(iii) Explain the effect on the output signal, $v_o(t)$ as the frequency, ω of input signal, $v_i(t)$ is varied.

(3 marks)

- Q7 (a) State two (2) advantages of using negative feedback in the amplifier circuit design. (4 marks)
 - (b) Figure **Q7** shows a series-shunt feedback network. The open-loop gain, A of this amplifier is 1×10^4 and the resistor $R_S = 1 \text{ k}\Omega$.
 - (i) Derive the expression of the feedback factor, β (4 marks)
 - (ii) Calculate the ratio of R_1/R_2 to obtain the closed-loop voltage gain, A_f of 5. Leave your answer in 3 decimal points (5 marks)
 - (iii) If $v_s = 1$ V, find the voltages v_o , v_f and v_i (4 marks)
 - (iv) If the open loop gain decreases by 20%, deduce the corresponding decrease in the closed-loop voltage gain.

 (3 marks)

- END OF QUESTION -

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME:

ELECTRONIC CIRCUIT THEORY

PROGRAMME:

BEV

COURSE CODE: BEF 12603

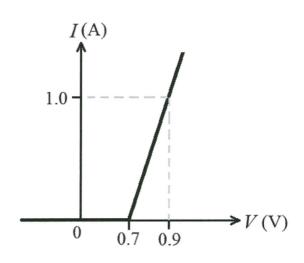
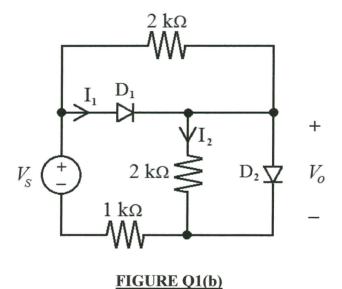
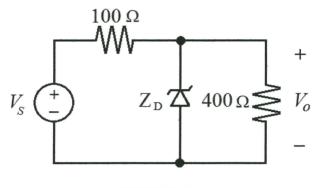



FIGURE Q1(a)

SEMESTER/SESSION: SEM II/2013/2014 PROGRAMME:

BEV


COURSE NAME:

ELECTRONIC CIRCUIT THEORY COURSE CODE:

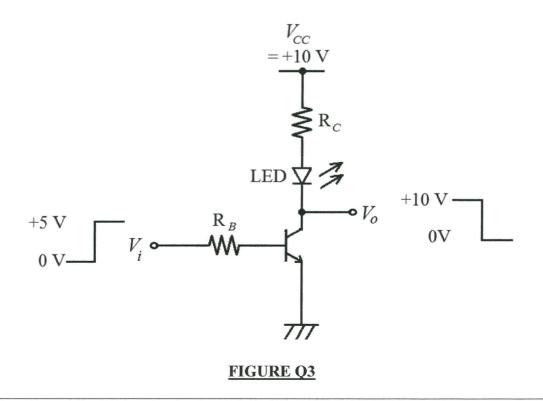
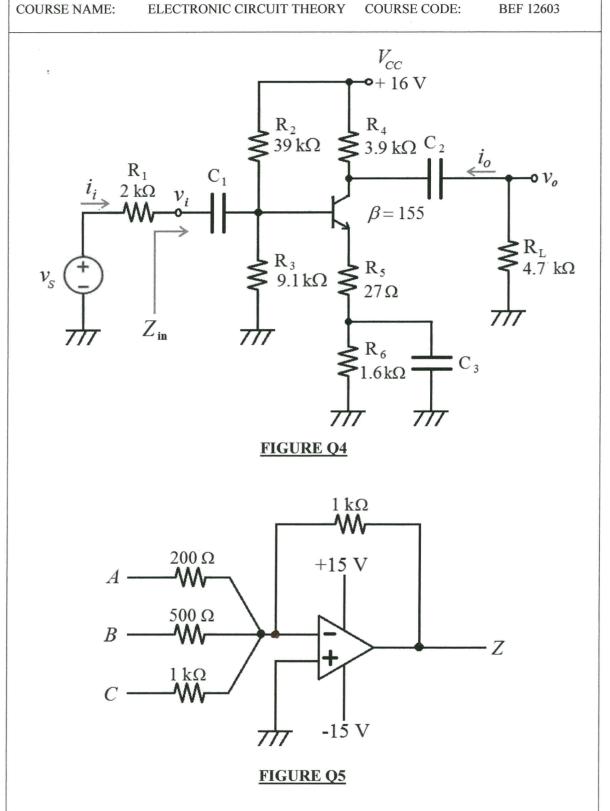

BEF 12603

TABLE Q2

$V_s(V)$	-10	0	2	5	7.5	10
$V_o(V)$						

FIGURE Q2



SEMESTER/SESSION: SEM II/2013/2014

ELECTRONIC CIRCUIT THEORY

PROGRAMME:

BEV

SEMESTER/SESSION: SEM II/2013/2014

PROGRAMME:

BEV

COURSE NAME:

ELECTRONIC CIRCUIT THEORY COURSE CODE:

BEF 12603

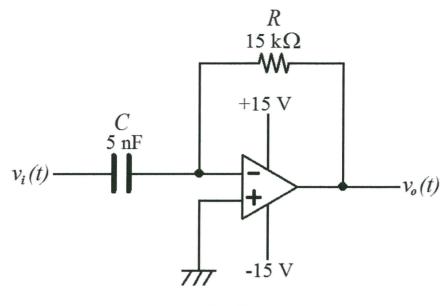
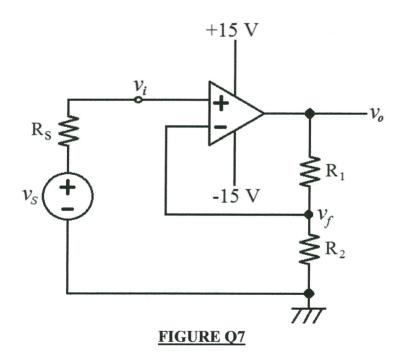



FIGURE Q6

9

SEMESTER/SESSION: SEM II/2013/2014

PROGRAMME:

BEV

COURSE NAME:

ELECTRONIC CIRCUIT THEORY

COURSE CODE:

BEF 12603

FORMULA

Bipolar Junction Transistor (BJT)

$$\beta = \frac{I_C}{I_B}$$

$$\alpha = \frac{I_C}{I_E}$$

$$r_e = \frac{26 \text{ mV}}{I_E}$$

$$Z_{in} = R'_B || \beta(r_e + R_E)$$

$$Z_{out} = R_C$$

For common-emitter

amplifier

Amplifier Gain:

Voltage gain, $A_v = \frac{v_o}{v_i}$

Current gain, $A_i = \frac{i_0}{i_i}$ Power gain, $A_p = \frac{p_0}{p_i}$

Voltage gain with feedback, $A_{vf} = \frac{A_o}{1 + A_0 \beta}$