

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME

: ELECTRIC CIRCUIT THEORY

COURSE CODE : BEX 10103

PROGRAMME : 4 BEE

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF **ELEVEN (11)** PAGES

BEX 10103

Q1	(a)	With the aid of appropriate circuit diagram, explain what is meant by supe (4	rnode. marks)
	(b)	The pin diagram of a resistance array is shown in Figure Q1(b). F equivalent resistance between the following.	and the
		(i) a and b (3)	marks)
		(ii) c and d (3)	marks)
	(c)	Three devices with P_1 Watts, P_2 Watts and P_3 Watts, respectively, are con in parallel to a common voltage source. Prove that the total power is equal $P_T = P_1 + P_2 + P_3$.	
			marks)
	(d)	Two devices are rated as shown in Figure Q1(d). Calculate the value of the resistors R_1 and R_2 needed to power the device using a 20 V battery.	
			marks)
Q2	(a)	Determine v_0 in the circuit shown in Figure Q2(a) using the superprinciple.	position
		* *) marks)
	(b)	Find the Thevenin equivalent circuit of the circuit shown in Figure Q2(the left of the terminal x - y , and the current to $R_L = 50 \Omega$. What is the map power transfer to the R_L and its value?	
) marks)
Q3	(a)	Using nodal analysis, determine V_o in the circuit in the circuit shown in Fig. (276)	igure
		Q3(a).	marks)
	(b)	Use mesh analysis to obtain i_o in the Figure Q3(b).	
		(1	1 marks)
Q4	(a)	For the circuit in Figure Q4(a), determine	
		(i) the voltage across each capacitor	
		(ii) the energy stored in each capacitor (10) marks)

BEX 10103

ANTENDERA.

(b) Show that the voltage division rule for two capacitors in series as in Figure Q4(b) is $v_1 = \frac{C_2}{C_1 + C_2} v_s$, and $v_2 = \frac{C_1}{C_1 + C_2} v_s$

(5 marks)

Show that the current division rule for two capacitors in parallel as in Figure Q4(c) is $i_1 = \frac{C_1}{C_1 + C_2} i_s$, and $i_2 = \frac{C_2}{C_1 + C_2} i_s$

(5 marks)

Q5 (a) Find the current through a 10-H inductor if the voltage across it is

$$v(t) = \begin{cases} 35t^2, & t > 0 \\ 0, & t < 0 \end{cases}$$

Also, find the energy stored at t = 6 s. Assume i(0) = 0

(5 marks)

(b) A 4 mF capacitor has the current waveform shown in Figure Q5(b). Assuming that v(0) = 10 V, sketch the voltage waveform v(t).

(15 marks)

Q6 (a) Assuming that the switch in Figure Q6(a) has been in position A for a long time and is moved to position B at t = 0, find $V_O(t)$ for $t \ge 0$.

(5 marks)

- (b) For the circuit in Figure Q6(b), determine;
 - i) $i_R(0^+)$, $i_L(0^+)$, and $i_C(0^+)$,
 - (ii) $di_R(0^+)/dt$, $di_L(0^+)/dt$, and $di_C(0^+)/dt$,
 - (iii) $i_R(\infty)$, $i_L(\infty)$, and $i_C(\infty)$.

(15 marks)

- Q7 (a) For the following pairs of sinusoids, determine which one leads and by how much.
 - (i) $v(t) = 10 \cos(4t 60^\circ)$ and $i(t) = 4 \sin(4t + 50^\circ)$

BEX 10103

THE PERSON NAMED IN

- (ii) $v_1(t) = 4\cos(377t + 10^\circ)$ and $v_2(t) = -20\cos 377t$
- (iii) $x(t) = 13 \cos 2t + 5 \sin 2t$ and $y(t) = 15 \cos(2t 11.8^\circ)$

(9 marks)

(b) For the circuit in Figure Q7(b), calculate Z_T and V_{ab} .

(11 marks)

- END OF QUESTION -

SEMESTER/SESSION : SEM II /2013/2014 COURSE

: ELECTRIC CIRCUITS

PROGRAMME: BEE

COURSE CODE: BEL 10103/BEX 10103

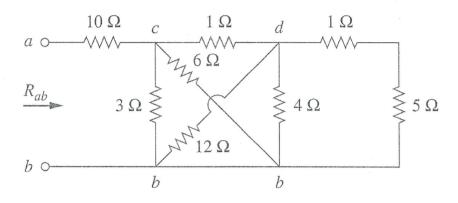


FIGURE Q1(b)

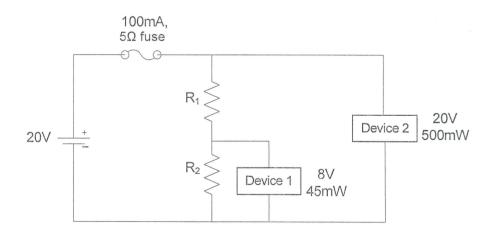
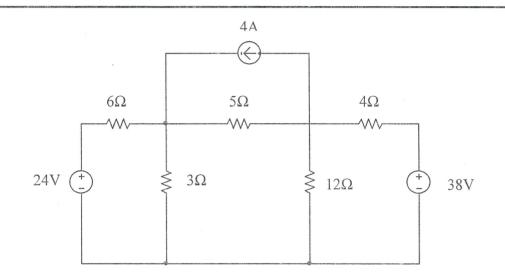
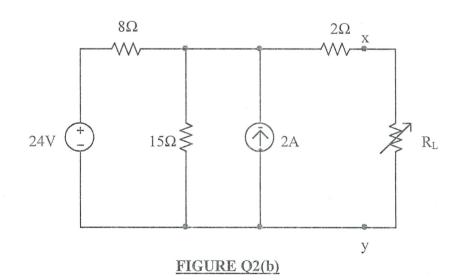


FIGURE Q1(d)

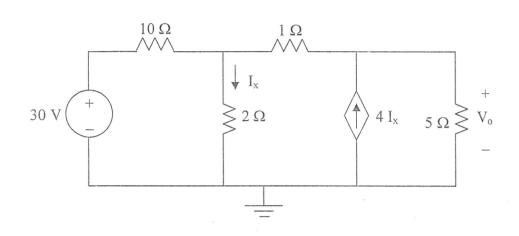

SEMESTER/SESSION : SEM II /2013/2014

PROGRAMME: BEE


COURSE

AND PROPERTY.

: ELECTRIC CIRCUITS COURSE CODE : BEL 10103/ BEX 10103


FIGURE Q2(a)

SEMESTER/SESSION : SEM II /2013/2014

PROGRAMME: BEE

COURSE : ELECTRIC CIRCUITS COURSE CODE: BEL 10103/BEX 10103

FIGURE Q3(a)

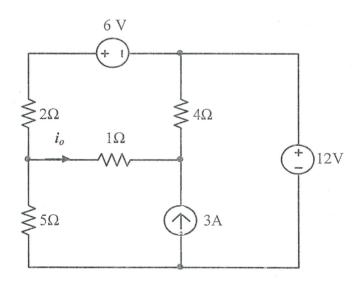
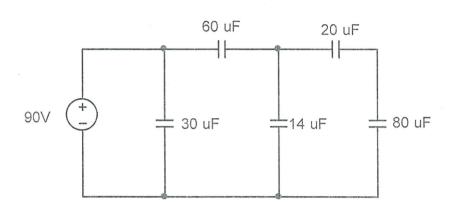


FIGURE Q3(b)

SEMESTER/SESSION : SEM II /2013/2014


PROGRAMME: BEE

COURSE

andstant.

: ELECTRIC CIRCUITS

COURSE CODE: BEL 10103/BEX 10103

FIGURE Q4(a)

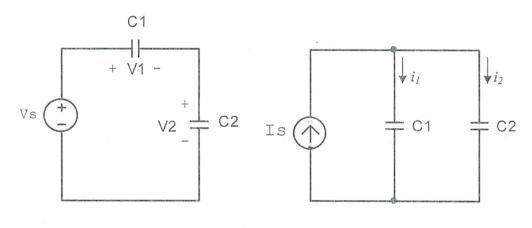


FIGURE Q4(b)

FIGURE Q4(c)

SEMESTER/SESSION : SEM II /2013/2014

PROGRAMME: BEE

THOMPSON ...

COURSE

: ELECTRIC CIRCUITS

COURSE CODE: BEL 10103/BEX 10103

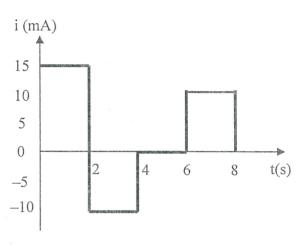


FIGURE Q5(b)

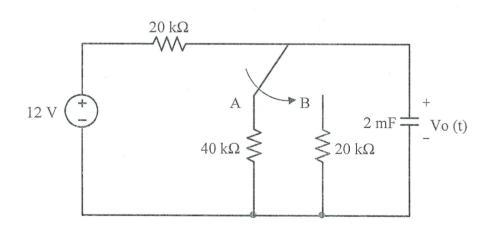


FIGURE Q6(a)

SEMESTER/SESSION : SEM II /2013/2014

/2013/2014 PROGRAMME : BEE

COURSE

: ELECTRIC CIRCUITS

COURSE CODE: BEL 10103/BEX 10103

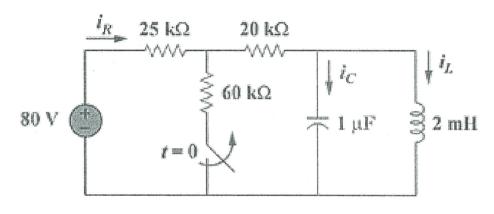


FIGURE Q6(b)

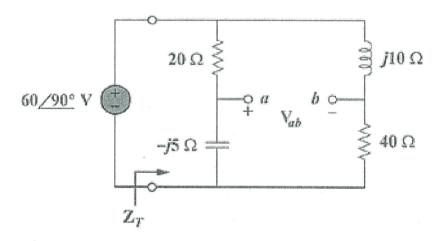


FIGURE Q7(b)

SEMESTER/SESSION : SEM II /2013/2014

: ELECTRIC CIRCUITS

PROGRAMME: BEE

COURSE CODE: BEL 10103/BEX 10103

CAPACITOR

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(t)dt + v(t_0) \qquad i(t) = \frac{1}{L} \int_{t_0}^{t} v(t)dt + i(t_0)$$

$$C = \frac{\varepsilon A}{d}$$

$$i = C \frac{dv}{dt}$$

$$w = \frac{1}{2}Cv^2$$

$$\tau = RC$$

INDUCTOR

$$i(t) = \frac{1}{L} \int_{t_0}^{t} v(t) dt + i(t_0)$$

$$L = \frac{N^2 \mu A}{l}$$

$$v = L \frac{di}{dt}$$

$$w = \frac{1}{2}Li^2$$

$$\tau = \frac{L}{R}$$