UNIVERSITI TUN HUSSEIN ONN MALAYSIA # FINAL EXAMINATION SEMESTER II **SESSION 2013/2014** COURSE NAME : ELECTRIC CIRCUIT THEORY COURSE CODE : BEX 10103 PROGRAMME : 4 BEE EXAMINATION DATE : JUNE 2014 **DURATION** : 3 HOURS INSTRUCTION : ANSWER FIVE (5) QUESTIONS **ONLY** THIS QUESTION PAPER CONSISTS OF **ELEVEN (11)** PAGES ### BEX 10103 | Q1 | (a) | With the aid of appropriate circuit diagram, explain what is meant by supe (4 | rnode.
marks) | |----|-----|---|------------------| | | (b) | The pin diagram of a resistance array is shown in Figure Q1(b). F equivalent resistance between the following. | and the | | | | (i) a and b (3) | marks) | | | | (ii) c and d (3) | marks) | | | (c) | Three devices with P_1 Watts, P_2 Watts and P_3 Watts, respectively, are con in parallel to a common voltage source. Prove that the total power is equal $P_T = P_1 + P_2 + P_3$. | | | | | | marks) | | | (d) | Two devices are rated as shown in Figure Q1(d). Calculate the value of the resistors R_1 and R_2 needed to power the device using a 20 V battery. | | | | | | marks) | | | | | | | Q2 | (a) | Determine v_0 in the circuit shown in Figure Q2(a) using the superprinciple. | position | | | | * * |) marks) | | | (b) | Find the Thevenin equivalent circuit of the circuit shown in Figure Q2(the left of the terminal x - y , and the current to $R_L = 50 \Omega$. What is the map power transfer to the R_L and its value? | | | | | |) marks) | | | | | | | Q3 | (a) | Using nodal analysis, determine V_o in the circuit in the circuit shown in Fig. (276) | igure | | | | Q3(a). | marks) | | | (b) | Use mesh analysis to obtain i_o in the Figure Q3(b). | | | | | (1 | 1 marks) | | | | | | | Q4 | (a) | For the circuit in Figure Q4(a), determine | | | | | (i) the voltage across each capacitor | | | | | (ii) the energy stored in each capacitor (10 |) marks) | #### BEX 10103 ANTENDERA. (b) Show that the voltage division rule for two capacitors in series as in Figure Q4(b) is $v_1 = \frac{C_2}{C_1 + C_2} v_s$, and $v_2 = \frac{C_1}{C_1 + C_2} v_s$ (5 marks) Show that the current division rule for two capacitors in parallel as in Figure Q4(c) is $i_1 = \frac{C_1}{C_1 + C_2} i_s$, and $i_2 = \frac{C_2}{C_1 + C_2} i_s$ (5 marks) Q5 (a) Find the current through a 10-H inductor if the voltage across it is $$v(t) = \begin{cases} 35t^2, & t > 0 \\ 0, & t < 0 \end{cases}$$ Also, find the energy stored at t = 6 s. Assume i(0) = 0 (5 marks) (b) A 4 mF capacitor has the current waveform shown in Figure Q5(b). Assuming that v(0) = 10 V, sketch the voltage waveform v(t). (15 marks) Q6 (a) Assuming that the switch in Figure Q6(a) has been in position A for a long time and is moved to position B at t = 0, find $V_O(t)$ for $t \ge 0$. (5 marks) - (b) For the circuit in Figure Q6(b), determine; - i) $i_R(0^+)$, $i_L(0^+)$, and $i_C(0^+)$, - (ii) $di_R(0^+)/dt$, $di_L(0^+)/dt$, and $di_C(0^+)/dt$, - (iii) $i_R(\infty)$, $i_L(\infty)$, and $i_C(\infty)$. (15 marks) - Q7 (a) For the following pairs of sinusoids, determine which one leads and by how much. - (i) $v(t) = 10 \cos(4t 60^\circ)$ and $i(t) = 4 \sin(4t + 50^\circ)$ #### BEX 10103 THE PERSON NAMED IN - (ii) $v_1(t) = 4\cos(377t + 10^\circ)$ and $v_2(t) = -20\cos 377t$ - (iii) $x(t) = 13 \cos 2t + 5 \sin 2t$ and $y(t) = 15 \cos(2t 11.8^\circ)$ (9 marks) (b) For the circuit in Figure Q7(b), calculate Z_T and V_{ab} . (11 marks) - END OF QUESTION - SEMESTER/SESSION : SEM II /2013/2014 COURSE : ELECTRIC CIRCUITS PROGRAMME: BEE COURSE CODE: BEL 10103/BEX 10103 FIGURE Q1(b) FIGURE Q1(d) SEMESTER/SESSION : SEM II /2013/2014 PROGRAMME: BEE COURSE AND PROPERTY. : ELECTRIC CIRCUITS COURSE CODE : BEL 10103/ BEX 10103 #### FIGURE Q2(a) SEMESTER/SESSION : SEM II /2013/2014 PROGRAMME: BEE COURSE : ELECTRIC CIRCUITS COURSE CODE: BEL 10103/BEX 10103 #### FIGURE Q3(a) FIGURE Q3(b) SEMESTER/SESSION : SEM II /2013/2014 PROGRAMME: BEE COURSE andstant. : ELECTRIC CIRCUITS COURSE CODE: BEL 10103/BEX 10103 #### FIGURE Q4(a) FIGURE Q4(b) FIGURE Q4(c) SEMESTER/SESSION : SEM II /2013/2014 PROGRAMME: BEE THOMPSON ... COURSE : ELECTRIC CIRCUITS COURSE CODE: BEL 10103/BEX 10103 FIGURE Q5(b) FIGURE Q6(a) SEMESTER/SESSION : SEM II /2013/2014 /2013/2014 PROGRAMME : BEE COURSE : ELECTRIC CIRCUITS COURSE CODE: BEL 10103/BEX 10103 FIGURE Q6(b) FIGURE Q7(b) SEMESTER/SESSION : SEM II /2013/2014 : ELECTRIC CIRCUITS PROGRAMME: BEE COURSE CODE: BEL 10103/BEX 10103 #### **CAPACITOR** $$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(t)dt + v(t_0) \qquad i(t) = \frac{1}{L} \int_{t_0}^{t} v(t)dt + i(t_0)$$ $$C = \frac{\varepsilon A}{d}$$ $$i = C \frac{dv}{dt}$$ $$w = \frac{1}{2}Cv^2$$ $$\tau = RC$$ #### **INDUCTOR** $$i(t) = \frac{1}{L} \int_{t_0}^{t} v(t) dt + i(t_0)$$ $$L = \frac{N^2 \mu A}{l}$$ $$v = L \frac{di}{dt}$$ $$w = \frac{1}{2}Li^2$$ $$\tau = \frac{L}{R}$$