

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS II

COURSE CODE

: BEF 12503

PROGRAMME

: BEV

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

- Q1 (a) DC and AC power generations are the common sources for power generation. For AC generation it is involved the amplitude, frequency and phase parameters.
 - (i) State the **TWO** (2) differences between the frequency and phase for AC generation.

(5 marks)

(ii) Explain **TWO** (2) advantages of AC generation compared to DC generation.

(5 marks)

- (b) The time function is a important parameter in a circuit analysis. This function can be informed of voltage or current source. This function will determine the operating point of a source,
 - (i) State and sketch the time function for unit step, unit impulse and unit ramp.

 (7 marks)
 - (ii) Explain the response of the circuit if the time function is not given at the source.

(3 marks)

Q2 (a) Sketch the characteristics between voltage and current load when a AC source is connected in series with the R-L load.

(3 marks)

- (b) The sinusoidal current source in the circuit shown in Figure Q2(b) produces the current $i_s = 8 \cos 200,000t A$,
 - (i) Construct the frequency domain equivalent circuit.

(2 marks)

(ii) Find the steady state expression for v, i_1 , i_2 and i_3 .

(12 marks)

- (c) Differentiate between the impedance Z and admittance Y in a AC circuit analysis. (3 marks)
- Q3 (a) Determine the voltages of V_1 , V_2 and V_3 in the circuit shown in Figure Q3(a) (10 marks)
 - (b) The circuit in Figure $\mathbf{Q}(3)\mathbf{b}$ has a load consisting the parallel combination of the resistor and inductor. Draw the phasor diagram of the circuit with and without the capacitor place in parallel with the R_2 and L_2

(7 marks)

(c) Explains the advantages of adding the capacitor in Figure Q3(b) with responded

to the voltage and current input.

			(3 m	narks)
Q4	(a)	The AC power analysis contains several elements. Explain,		
		(i)	The instantaneous power. (1 i	mark)
		(ii)	The average power. (2 m	narks)
		(iii)	Reactive power (2 m	narks)
		(iv)	Power factor	narks)
	(b)			
		(i)	The average and reactive power delivered to the load. (4 m	arks)
		(ii)	The peak current. (3 m	arks)
		(iii)	The load impedance. (1 n	nark)
	(c)	(c) Calculate the maximum power that can be transferred to the Q4(c)		igure
			(5 m	arks)
Q5	(a)	The dot marking procedures are important in order to determine the polarity of the transformer. Explain every procedures that use for dot marking and determine the		
		dot m	arking for Figure Q5(a). (5 ma	ırks)
	(b)	Figure Q5(a) shows the linear transformer operation. The parameters are g R1=200 Ω , R2=100 Ω , L1=9H, L2=4H and k=0.5. The transformer cou impedance consisting of an 800 Ω resistor in series with a 1uF capacit sinusoidal voltage source. The 300Vrms source has an internal imped 500+j100 Ω and a frequency of 400 rad/s.		s an to a
		(i)	Construct a frequency domain equivalent circuit of the system.	

(3 marks)

- (ii) Calculate the self impedance of the primary and secondary circuit. (2 marks)
- (iii) Calculate the impedance reflected into primary winding. (2 marks)
- (iv) Calculate the impedance seen looking into primary terminal of the transformer. (1 mark)
- (v) Calculate the rms value of the primary and secondary current. (2 marks)
- (vi) Calculate the rms value of the voltage at the terminals of the load and source.

 (2 marks)
- (vii) Find the average value of the power delivered to the 800Ω resistor. (1 mark)
- (viii) Determine the efficencey of the power delivered from the transformer to the load.

 (2 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION COURSE NAME : SEM II / 2013/2014

: ELECTRIC CIRCUIT ANALYSIS II COURSE CODE

PROGRAMME

: BEV

: BEF 12503

FIGURE Q2(b)

FIGURE Q3(a)

FINAL EXAMINATION

SEMESTER/SESSION COURSE NAME

: SEM II / 2013/2014

: ELECTRIC CIRCUIT ANALYSIS II COURSE CODE

PROGRAMME

: BEV

E : BEF 12503

FIGURE Q5(a)