

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2013/2014**

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS I

COURSE CODE

: BEF 12403

PROGRAMME

: BEV

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

Differentiate between supermesh and supernode.

Q1 (a)

			(8 marks)
	(b)	Figure Q1(b)(i) and Figure Q1(b)(ii) show I-V characteristics and repr (circuit model) for an ideal dc current source, respectively. Pro characteristics and representation for a practical dc current source.	duce I-V
			(8 marks)
	(c)	Refer to Figure Q1(c), using nodal analysis:	
		(i) Solve for V_2 .	(7 marks)
		(ii) Find the power of I_{SI} .	(2 marks)
Q2	(a)	Differentiate between power and energy in an electrical circuit.	(4 marks)
	(b)	Using only a voltmeter and a 1Ω resistor, recommend how current $I_{\scriptscriptstyle O}$	in Figure
		Q2(b) can be read directly with the voltmeter.	(6 marks)
	(c)	In Figure Q2(c) , determine I_x using superposition rule.	(15 marks)
Q3	(a)	Relate the maximum power transfer theorem with efficiency in an electric	eal circuit. (4 marks)
	(b)	Predict the efficiency of a system if,	
		(i) $R_{load} = R_{source}$	(2 marks)
		(ii) $R_{load} = \infty$ or $R_{source} = 0$	(2 marks)
		(iii) $R_{load} = 0$	(2 marks)
	(c)	The circuit shown in Figure Q3(c) is a model for a common-emitted	er bipolar
	(1)	junction transistor amplifier (i) Determine a load resistance, R_L so that maximum power is transf from the amplifier.	
			(7 marks)
		(ii) Calculate the total power absorbed in part Q3(c)(i).	(8 marks)

Q4 Figure Q4(a) shows a resistive circuit whose voltage $v_s(t)$ has waveform as shown in Figure Q4(b).

(a) Produce the time expression for voltage $v_0(t)$.

(14 marks)

(b) Sketch the waveform of $v_o(t)$.

(2 marks)

(c) Solve for the average and effective values of voltage $v_o(t)$.

(7 marks)

(d) Calculate the average power dissipated by the 2 Ω resistor.

(2 marks)

- END OF QUESTION -

FINAL EXAMINATION SEMESTER/SESSION: II/ 2013/ 2014 PROGRAMME :BEV COURSE NAME : ELECTRIC CIRCUIT ANALYSIS I COURSE CODE : BEF 12403 - I i(t) = 1 V_1 FIGURE Q1(b)(i) FIGURE Q1(b)(ii) V_{s1}= 10 V R₁=2Ω $R_3 = 2 \Omega$ $R_4=1\Omega$ $R_2 = 4 \Omega$ $I_{s1} = -2 \text{ A}$

FIGURE Q1(c)

P FINAL EXAMINATION

SEMESTER/SESSION	: II/ 2013/ 2014	PROGRAMME	: BEV
COURSE NAME	: ELECTRIC CIRCUIT ANALYSIS I	COURSE CODE	: BEF 12403

FINAL EXAMINATION

SEMESTER/SESSION	: II/ 2013/ 2014	PROGRAMME	: BEV
COURSE NAME	: ELECTRIC CIRCUIT ANALYSIS I	COURSE CODE	: BEF 12403

