

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2013/2014

COURSE NAME : ANALOG ELECTRONICS

COURSE CODE : BEL 10203

PROGRAMME : BEJ

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF THIRTEEN (13) PAGES

Q1	(a)	Describe and differentiate the processes that result in a bonding structure as illustrated in Figure Q1(a)(i) and Q1(a)(ii). Hence determine the result of each process.		
		or eac	in process.	(5 marks)
	(b)	The circuit in Figure Q1(b) is a centre-tapped rectifier. Referring to this circuit;		
		(i)	Summarize the operation of a centre-tapped rectifier.	(4 marks)
		(ii)	Draw and label the input, V_i and output waveforms V_{out} S1 and Switch S2 are closed but Switch S3 is opened.	
				(4 marks)
			Draw and label the output waveforms V_{out} if all switched.	itches are
				(2 marks)
	(c)	Design a clamper circuit to perform the function indicated in Q1(c). Prove your design with calculation.		in Figure
				(5 marks)
	(d)	Figure Q1(d) shows the Zener regulation circuit. V_{in} is 40 V, R_1 is 50 Ω , R_L is 100 Ω and the breakdown voltage of the zener diode is 20 V. Find:		
		(i)	the voltage drop across the load resistance R_{L} ,	(1 mark)
		(ii)	the current through the load resistor R _L ,	(1 mark)
		(iii)	the voltage drop across R_1 ,	(1 mark)
		(iv)	the current through R ₁ ,	(1 mark)
		(v)	the current through the zener diode.	(1 mark)

- Q2 Figure Q2 shows a common emitter amplifier which is to be manufactured using transistors with a nominal β value of 200.
 - (a) Determine the collector bias current when $\beta = 200$, taking into account the base current of the transistor.

(3 marks)

(b) Evaluate the collector bias current in the cases $\beta = 150$ and $\beta = 250$. Conclude the results.

(3 marks)

(c) Draw a small-signal equivalent circuit of the amplifier and hence prove that the voltage gain may be written as:

$$\frac{-R_C}{re+R_E}$$

You may neglect the transistor's small-signal output resistance, r_o . (4 marks)

- (d) Evaluate the expression given in **Q2(c)** by assuming $\beta = 200$. (4 marks)
- (e) Determine the voltage gain of the amplifier if the emitter resistor, R_E were bypassed using a capacitor? (2 marks)
- (f) If the amplifier in Figure **Q2** has an applied load, R_L of 4.7 k Ω , a source resistance, R_S of 1.5 k Ω , an input capacitor, C_S of 1 μ F, an output capacitor, C_C of 1 μ F and an emitter capacitor, C_E of 100 μ F;
 - (i) Draw its AC equivalent circuit for low frequency response. (2 marks)
 - (ii) Determine the low cutoff frequencies f_{LS} , f_{LC} and f_{LE} . (6 marks)
 - (iii) State the dominant frequency, f_L and sketch the frequency response. (1 mark)

Q3 A Field Effect Transistor (FET) circuit has a MATLAB plot of the transfer characteristics curve and the bias line as in Figure Q3. Based on the specifications given as follows:

$$V_{DD} = 15 \text{ V}, V_{DS} = 5.475 \text{ V} \text{ and } I_1 = I_2 = \frac{V_{DD}}{R_1 + R_2} = 16.67 \ \mu\text{A};$$

(a) Design the circuit (with bypass capacitor). Hence determine the value of all resistors.

(12 marks)

(b) Draw the AC equivalent of the circuit and calculate its input impedance Z_i , output impedance Z_o and voltage gain A_v . Assume $r_d \ge 10R_D$.

(8 marks)

- Q4 (a) For the BJT cascade amplifier of Figure Q4(a),
 - (i) calculate the emitter current I_E , for each stage.

(2 marks)

(ii) draw the AC equivalent circuit.

(3 marks)

(iii) calculate the voltage gain of each stage and the overall AC voltage gain.

(5 marks)

- (b) For the Darlington network of Figure **Q4(b)**,
 - (i) determine the DC bias voltages, V_{BI} , V_C , and V_{E2} and currents, I_{BI} and I_{E2} .

(5 marks)

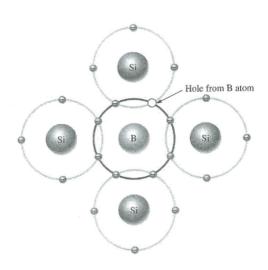
(ii) draw the AC equivalent circuit, then calculate the mid-band voltage gain, $A_v = V_o/V_i$.

(5 marks)

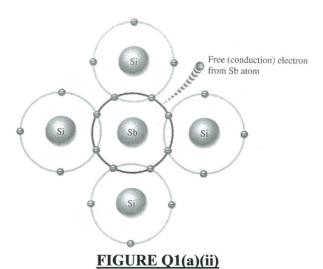
- **Q5** Figure **Q5** shows the class-B power amplifier circuit. Given that Rb1 = Rb2 = $3.9k\Omega$, supply voltage, $\pm Vcc = \pm 20V$, Rload =10Ω, Ri = 47Ω and Cin = 1 μF. For this figure;
 - (a) Explain the circuit operation.

(4 marks)

- (b) Draw the maximum peak output voltage, $V_{op(max)}$ across the Rload. (2 marks)
- (c) Calculate the circuit efficiency if the peak output voltage, V_{op} across the Rload is 10V. (4 marks)


- END OF QUESTION -

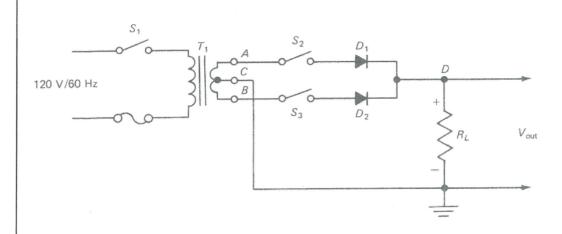
SEMESTER/SESSION: SEM II/2013/2014


COURSE NAME : ANALOG ELECTRONICS

PROGRAMME: BEJ

COURSE CODE: BEL 10203

FIGURE Q1(a)(i)



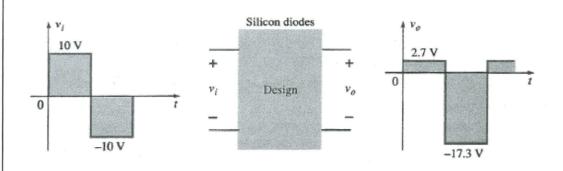
SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME : ANALOG ELECTRONICS

PROGRAMME: BEJ

COURSE CODE: BEL 10203

FIGURE Q1(b)


SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ANALOG ELECTRONICS

PROGRAMME: BEJ

COURSE CODE: BEL 10203

FIGURE Q1(c)

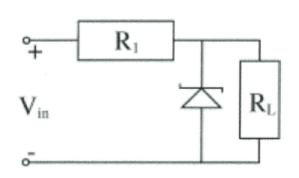


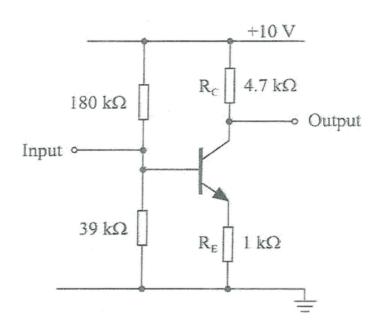
FIGURE Q1(d)

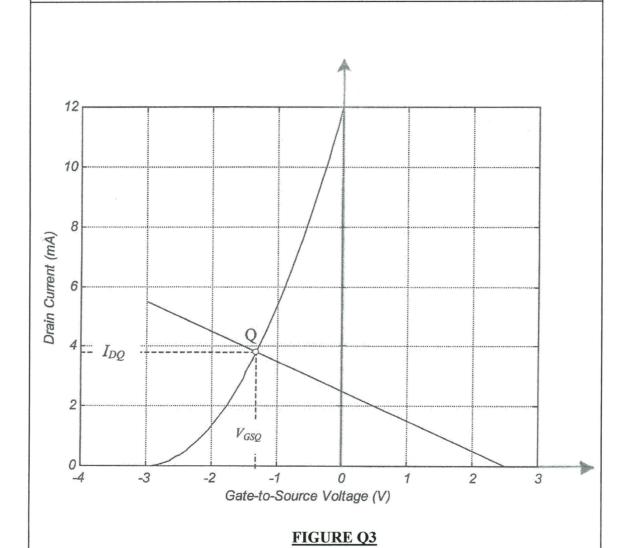
SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME : ANALOG ELECTRONICS

PROGRAMME: BEJ

COURSE CODE: BEL 10203




FIGURE Q2

9

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME : ANALOG ELECTRONICS

PROGRAMME: BEJ

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME : ANALOG ELECTRONICS

PROGRAMME: BEJ

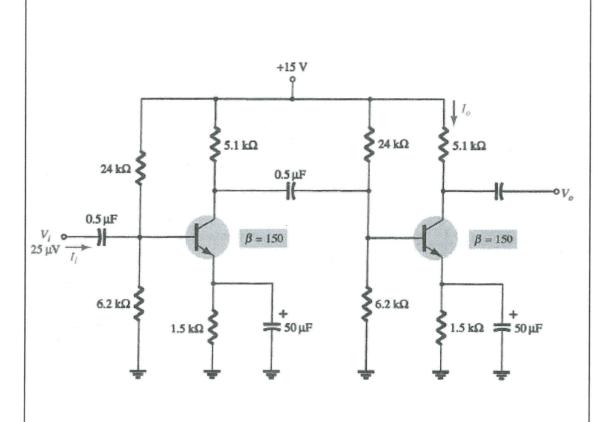


FIGURE Q4(a)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ANALOG ELECTRONICS

PROGRAMME: BEJ

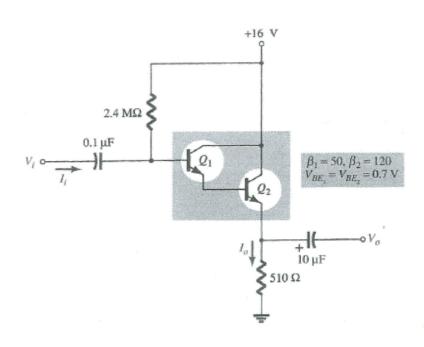


FIGURE Q4(b)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME : ANAI

: ANALOG ELECTRONICS

PROGRAMME: BEJ

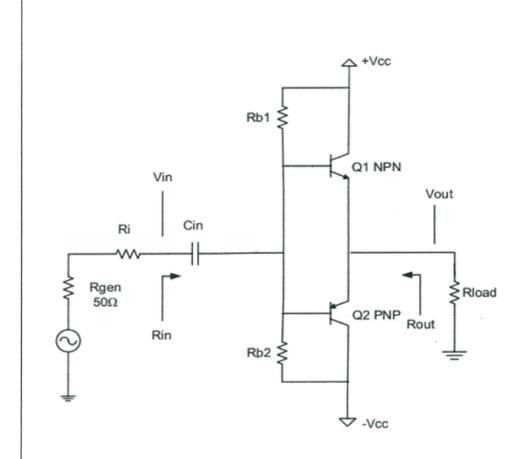


FIGURE Q5