

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2012/2013**

COURSE NAME

: TRANSFORM CIRCUIT ANALYSIS

COURSE CODE

: BEF 22803

PROGRAMME

: 2 BEF

EXAMINATION DATE : JUNE 2013

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

Q1 (a) Figure Q1(a) shows the output voltage at a converter. Write the equation using the step function formula for Figure Q1(a).

(5 marks)

- (b) Express the function of $f(t) = \sin(\omega t)$ is equal to $\frac{\omega}{s^2 + \omega^2}$. (5 marks)
- (c) Figure Q1(c) shows the impulse response h(t) and input signal u(t). Calculate the convolution of the two signals h(t) and u(t).

 (10 marks)
- Q2 (a) Solve the Laplace transform of each of the following function:
 - (i) $f(t) = 40e^{-8(t-3)}u(t-3)$.
 - (ii) f(t) = (5t 10)[u(t 2) u(t 4)] + (30 5t)[u(t 4) u(t 8)] + (5t 50)[u(t 8) u(t 10)].

(10 marks)

(b) Determine the inverse transform for the function,

$$V(s) = \frac{2}{s^3 + 12s^2 + 36s}.$$

(10 marks)

- Q3 (a) Figure Q3(a) shows the electrical circuit for a typical electric system.
 - (i) Determine the transfer function for $H(s) = \frac{V_o(s)}{I_g(s)}$.
 - (ii) Show the poles and zeros value for H(s).
 - (iii) Plot the locations of the poles and zeros in root locus plant and with stability explanation.

(10 marks)

(b) The numerical expression for a transfer function is

$$\frac{v_o}{v_i} = \frac{110s}{(s+10)(s+100)}.$$

- (i) Draw the bode diagram for the amplitude for the transfer function given above.
- (ii) Calculate the amplitude of $v_o(t)$ in steady state if the $v_i(t) = 5\cos(500t + 15^0)$.

(10 marks)

Q4 (a) The Fourier transform of f(t) is given by,

$$F(\omega) = 0, -\infty \le \omega < -2;$$

 $F(\omega) = 2, -2 < \omega < -1;$
 $F(\omega) = 1, -1 < \omega < 1;$
 $F(\omega) = 2, 1 < \omega < 2;$
 $F(\omega) = 0, 2 < \omega < \infty.$

Evaluate f(t) for functions above

(7 marks)

(b) Figure Q4(a) shows the circuit consists of R and C with the value of 1000Ω and 0.1 uF respectively. The input voltage $V_s(t)$ to the source is shown in Figure Q4(b).

- (i) Developed the Fourier series of the input ramp voltage waveform shown in Figure Q4(b).
- (ii) Solve the RMS value of the capacitor voltage, v(t) for Figure Q4(a).

(13 marks)

- Q5 (a) The current in a 40Ω resistor is given by $i = 20e^{-2t}u(t)A$. By using the Parseval theorem calculate the total energy dissipated in the resistor which can be associated with the frequency band of $0 \le \omega \le 2\sqrt{3}$ rad/s. (8 marks)
 - The input voltage to the low pass RC filter shown in Figure Q5(b) is

(b)

$$v_i(t) = 15e^{-5t}u(t).$$

- (i) Find the percentage of the 1Ω energy available in the input signal is available in the output signal.
- (ii) Calculate the percentage of the output energy is associated with the frequency range of $0 \le \omega \le 10$ rad/s.

(12 marks)

-END OF QUESTIONS-

FINAL EXAMINATION

COURSE NAME

SEMESTER/SESSION : SEMESTER II/ SESSION 2012/2013 : TRANSFORM CIRCUIT ANALYSIS PROGRAMME : BEF

COURSE CODE: BEF 22803

FIGURE Q1(a)

FIGURE Q1(c)

BEF22803

FINAL EXAMINATION

SEMESTER/SESSION : SEMESTER II/ SESSION 2012/2013 COURSE NAME : TRANSFORM CIRCUIT ANALYSIS

PROGRAMME: BEF COURSE CODE: BEF 22803

11	$t^n e^{at}$	n!	s > a
' '	1 6		
L		$(s-a)^{n+1}$	
12	t sinat	2 <i>as</i>	s>0
		$(s^2-a^2)^2$	
13	t kos ut	s^2-a^2	s>0
!		$\sqrt{(s^2+a^2)^2}$	
14	t sinh at	2as	s > a
		$(s^2-a^2)^2$	
15	t kosh at	$s^2 + a^2$	s > a
		$\overline{(s^2+a^2)^2}$	_
16	y'(t)	$sY(s) - y(0), \text{ and } Y(s) = L\{y(t)\}$	
17	y''(t)	$s^2Y(s) - sy(0) - y'(0)$	
18	$e^{at} f(t)$	F(s-a)	
19	$t^{n} f(t)$, n=1,2,	$(-1)^n \frac{d^n}{ds^n} F(s)$	
20	$\mu_a(t)f(t)$	$e^{-as}L\{f(t+a)\}$	
21	$\mu_a(t)f(t+a)$	$e^{-a\epsilon}L\{f(t)\}$	
22	f(t)	$\int_{0}^{\infty} e^{-st} f(t)dt$	
		$\frac{\int_0^{\infty} e^{-st} f(t)dt}{1 - e^{-st}}$	
23	$\int f(\tau)g(t-\tau)d\tau$	F(s)G(s)	
24	$\int f(\tau)d\tau$	$\frac{1}{-F(s)}$	
	P. (2)	s (3)	