

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

CONTROL SYSTEM THEORY /

COURSE NAME

COURSE CODE : BEH 30603 / BEE 3143 PROGRAMME : BEH / BEE EXAMINATION DATE : JANUARY 2013 DURATION : 2 HOURS 30 MINUTES INSTRUCTION : ANSWER FOUR (4) QUESTIONS

:

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

Q1. (a) Explain the following concisely

(i)	Control system	(3 marks)
(ii)	Block diagram	(3 marks)
(iii)	Time-invariant	(3 marks)
(iv)	Process control	(3 marks)

(b) Give an example of a real practical application for a closed loop control system.
 Identify the input and output variables and by using a suitable block diagram,
 describe the operation of the selected application.

(13 marks)

Q2. Figure Q2 shows an armature-controlled d.c. motor with non zero armature inductance. This motor is assumed to have a constant magnetic field. The parameters for this motor are defined as follows:

 $k_b = back e.m.f. constant,$

 k_i = motor torque contanst,

 J_m = moment of inertia of the motor and load referred to the motor shaft,

 B_m = viscous friction constant of the motor and load referred to the motor shaft.

Draw the block diagram of the armature-controlled d.c motor and derive its transfer function $\theta_m(s)/V_a(s)$ where $\theta_m(s)$ and $V_a(s)$ are the Laplace transform of the angular displacement $\theta_m(t)$ and the motor voltage $V_a(t)$ respectively.

(25 marks)

•

Q3	(a) Name and sketch the three responses for a second order system.		
			(6 marks)
	(b) A control system is shown in Figure Q3. If the reference input r(t) is a unit step function derive the expression for its output response c(t). Hence determine:		tep function,
	i. ii. ii:	The peak-time t _p .	
	Sketc	h the output response c(t).	(19 marks)
Q4	24 By using the general rules for sketching a root locus, sketch the root locus for a control system as shown in Figure Q4.		
	From	the root locus	(16 marks)
	(a)	Determine the range of K so that the system response will be over-damped	
	(b)	Obtain the value of K so that the response is critically damped.	(3 marks)
	(c)	Determine the range of K so that the response is under-damped	(3 marks)
	(0)	Determine the range of K so that the response is under-damped	(3 marks)

Q5. The open-loop transfer function of a unity feedback control system is given by

,

$$G(s)=\frac{5}{s(s+2)}.$$

Design a lead compensator which gives $\omega_n = 4 \text{ rad/sec}$ and $\zeta = 0.5$.

(a) Obtain the closed-loop transfer function and the poles of the uncompensated system.

(4 marks)

(b) Obtain the desired poles if the lead compensator has been added.

(2 marks)

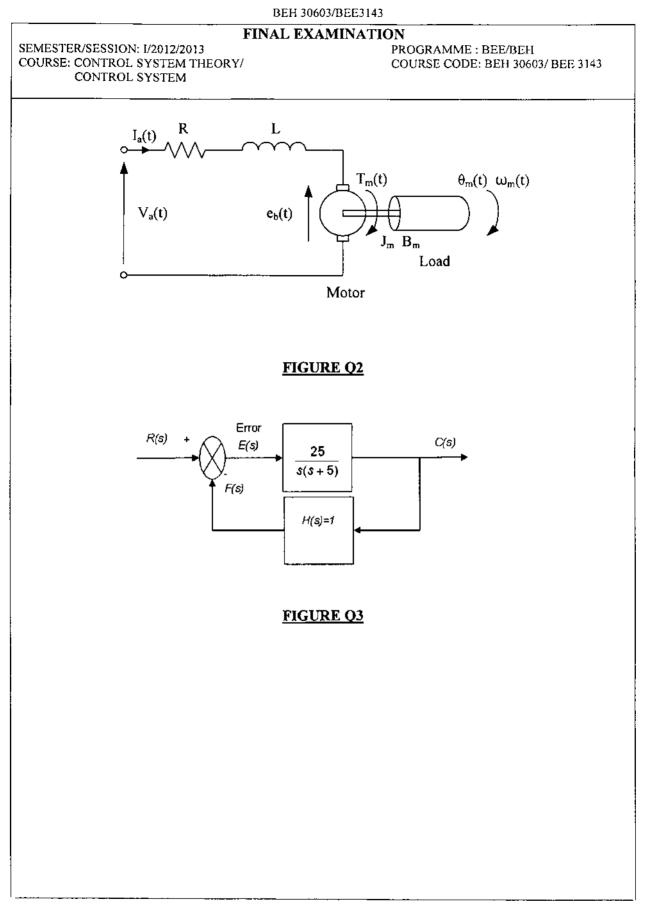
(5 marks)

(9 marks)

- (c) Obtain the angle of the compensator in the desired pole.
- (d) Obtain the poles and zeros of the compensator.
- (e) Obtain the gain of the compensator and hence give the transfer function of the compensator

(5 marks)

-END OF QUESTION-



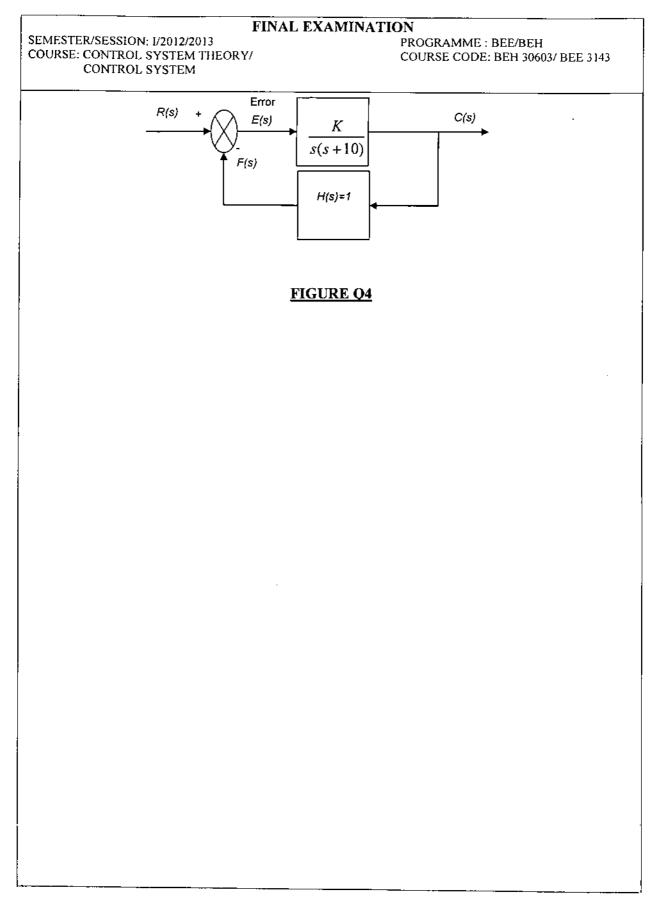
. .

.

5

·

.



FINAL EXAMINATION

SEMESTER/SESSION: 1/2012/2013 COURSE: CONTROL SYSTEM THEORY/ CONTROL SYSTEM

.

,

PROGRAMME : BEE/BEH COURSE CODE: BEH 30603/ BEE 3143

f(t)	F(s)
$\delta(t)$	1
u(t)	1
tu(t)	$\frac{s}{\frac{1}{s^2}}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{-\alpha t}u(t)$	$\frac{1}{s+a}$
$\sin \omega t u(t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos \alpha t u(t)$	$\frac{s}{s^2 + \omega^2}$
$e^{-\alpha t}\sin \omega t u(t)$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$
$e^{-at}\cos \omega t u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$

Table 1: Laplace transform table

FINAL EXAMINATION

SEMESTER/SESSION: 1/2012/2013 COURSE: CONTROL SYSTEM THEORY/ CONTROL SYSTEM

•

.

PROGRAMME : BEE/BEH COURSE CODE: BEH 30603/ BEE 3143

Table 2: Laplace transform theorems

Name	Theorem
Frequency shift	$\mathcal{L}\left[e^{-at}f(t)\right] = F(s+a)$
Time shift	$\mathscr{L}[f(t-T)] = e^{-sT}F(s)$
Differentiation	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{k-1}(0^-)$
Integration	$\mathscr{L}\left[\int_{S} f(\tau)d\tau\right] = \frac{F(s)}{s}$
Initial value	$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$
Final value	$\lim_{t \to \infty} f(t) = \limsup_{s \to 0} sF(s)$

FINAL EXAMINATION

SEMESTER/SESSION: 1/2012/2013 COURSE: CONTROL SYSTEM THEORY/ CONTROL SYSTEM

•

.

PROGRAMME : BEE/BEH COURSE CODE: BEH 30603/ BEE 3143

Table 3: 2nd Order prototype system equations

$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$T_r = \frac{\pi - \cos^{-1} \zeta}{\omega_n \sqrt{1 - \zeta^2}}$
$\mu_p = e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}}$	$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$
$T_s = \frac{4}{\zeta \omega_n}$ (2% criterion)	$T_s = \frac{3}{\zeta \omega_n} $ (5% criterion)