CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2010/2011

COURSE NAME	:	ELECTRIC NETWORK ANALYSIS AND SYNTHESIS			
COURSE CODE	:	BEX 31303 / BEE 3113			
PROGRAMME	•	BACHELOR OF ELECTRICAL ENGINEERING WITH HONOURS			
EXAMINATION DATE	:	APRIL / MEI 2011			
DURATION	:	2 HOURS 30 MINUTES			
INSTRUCTION	:	THIS EXAMINATION PAPER CONSISTS OF PART A AND PART B. ANSWER ONLY FOUR (4) QUESTIONS FROM PART A & ONE (1) QUESTION FROM PART B.			
THIS PAPER CONSISTS OF NINE (9) PAGES					

CONFIDENTIAL

PART A: ANSWER FOUR (4) QUESTIONS ONLY

- Q1 (a) Given a function, $f(t) = 2t^2 + 10 e^{-2t} \cosh at u(t)$. By using the Laplace Transform definition, determine the Laplace Transform of the time integration f(t). Given that $\cosh x = \frac{1}{2} (e^x + e^{-x})$.
 - (b) Obtain the Laplace Transform of the function in **Figure Q1(b)**.

(6 marks)

(6 marks)

(c) Determine the time domain function, v(t) for $V(s) = \frac{14s^2 + 10}{s(s+8)(s+6)^2}$.

(6marks)

(2 marks)

(d) Find the final value for the function,
$$F(s) = \frac{14s^2 + 6}{s(s+1)(s+5)}$$
.

Q2 (a) Convolution is important tools as it relates the input, output and transfer function of a system. Figure Q2(a) shows the system's impulse function, h(t) and input, x(t). Find the output, y(t) of the system using convolution integral.

(8marks)

(b) A system has a circuit shown in Figure Q2(b). With all the component values given and assuming there is no initial energy stored,

(i) find the system's transfer function,
$$\frac{Vo(s)}{Vi(s)}$$
.

plot the pole-zero diagram for the system.

(ii)

(7 marks)

(2 marks)

(iii) is the system producing a stable response? Please justify your answer.

(3 marks)

Q3 (a) Consider the circuit shown in Figure Q3(a). The input to this circuit is $V_{in}(t)$, and the output is $V_{out}(t)$. Assuming that there is no initial condition in the circuit,

(i) derive the circuit transfer function,
$$H(s) = \frac{V_O(s)}{V_i(s)}$$
.
(6 marks)

(ii) let $R = 4\Omega$, L = 2H and C = 5mF, sketch the magnitude and phase bode plot for the transfer function, H(s) derived in part Q3(a)(i).

(9 marks)

•

	(b)	The Quality Factor (Q) and the value of resistor (R) in the circuit shown in Figure Q3(b) are given by $Q = 5$ and $R = 10K\Omega$. Based on the given Q and R values,							
		(i)	find the inductance value of the inductor (L) shown in Figure Q3(b).	(3 marks)					
		(ii)	determine the Bandwidth (B) for the response.	(2 marks)					
Q4	(a)	Descr	ibe the magnitude response for each type of the following filter:						
		(i)	Bandpass filter.	(2 montra)					
		(ii)	First order low pass Chebychev Type 1 filter.						
		(iii)	Second order high pass Butterworth filter.	(2 marks)					
				(2 marks)					
	(b)	An engineer has proposed a filter network given in Figure Q4(b). Assume zero initia condition. Let $R_{in} = 10k\Omega$.							
		(i)	olve for the transfer function $H(s) = V_0(s)/V_s(s)$ in symbolic form. Simplify our expression as much as possible.						
		(ii)	Identify the type of filter	(6 marks)					
		(iii)	Find the values of capacitor, C , resistors, R_1 and R_2 if the gain is 5 and frequency is 3 kHz.	d the cutoff (4 marks)					
		(iv)	In your opinion, suggest how to increase the overall gain of the filter.	(2 marks)					
Q5	(a)	Defin	e a two port network	() marka)					
	(b)	Deter	Determine the y-parameter of the two-port network if Figure Q5(a) . (11 marks)						
	(c)	Deter	mine the h - parameter based on the y-parameter obtained from part Q5	(b). (7 marks)					

3

PART B: ANSWER ONE (1) QUESTION ONLY.

- Q6 (a) For the periodic functions in Figure Q6(a),
 - (i) identify the type of symmetry.
 - (ii) determine the frequency, ω_o in radians per second.

(1 mark)

(2 marks)

(b) Sketch the amplitude and phase spectra for a function if the trigonometric Fourier series of the function is given by:

$$f(t) = 6 + 4\cos(t + 50^{\circ}) + 2\cos(2t + 35^{\circ}) + \cos(3t + 25^{\circ}) + 0.5\cos(4t + 20^{\circ})$$
(3 marks)

(c) The periodic triangular wave in Figure Q6(c)(i) is applied to the RC circuit shown in Figure Q6(c)(ii). Let the values of $T_0 = 2\pi$ ms, R = 10 k Ω and C = 50 nF. If the Fourier coefficients of the input are:

$$a_0 = 0$$
 $a_n = 0$ $b_0 = \frac{160}{(n\pi)^2} \sin\left(n\frac{\pi}{2}\right)$

(i) express $v_0(t)$ in terms of $v_i(t)$.

(3 marks)

(ii) find the first three nonzero terms in the Fourier series of $v_0(t)$.

(9 marks)

(iii) based on your result in part (c)(ii), what can you conclude about the magnitude of the nth harmonic as $n \to \infty$.

(2 marks)

Q7 (a) Determine the Fourier transform of the following signal,

$$f(t) = \begin{cases} \frac{At}{B}; & 0 \le t \le B\\ 0; & otherwise \end{cases}$$

(7 marks)

- (b) Let the signal calculated in part Q7(a) be the input voltage, V_i, to an ideal op-amp filter circuit shown in Figure Q7(b). Based on the circuit,
 - (i) determine the circuit transfer function, $H(\omega)$.

(9 marks)

(ii) find the Fourier transform of the output voltage, V₀, of the corresponding circuit.

(4 marks)

.

.

7

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2010/2011 COURSE NAME

: ELECTRIC NETWORK ANALYSIS AND SYNTHESIS

PROGRAMME : 2 BEE / 3 BEE COURSE CODE : BEX 31303 / BEE 3113

Table 1:	Properties of	f Laplace Transform
No.	f(t)	F(s)
1.	δ(t)	1
2.	u(t)	1/s
3.	tu(t)	1/s ²
4.	t ⁿ u(t)	$(n!)/s^{n+1}$
5.	$e^{-at}u(t)$	1/(s+a)
6.	sin ωt u(t)	$\omega/(s^2+\omega^2)$
7.	$\cos \omega t u(t)$	$s/(s^2+\omega^2)$
8.	f(at)	$\frac{1}{-F(\frac{s}{-})}$
	-at (X4)	
9.	$e^{-t}(t)$	
10.	f(t-a) u(t-a)	e ^w F(s)
11.	$\frac{df}{df}$	$sF(s)-f(0^{-})$
	dt	
	$d^n f$	$s''F(s)-s''^{-1}f(s)$
	dt"	$-s^{n-2}f'(0)f^{(n-1)}(0^{-})$
12.	$\int_{0}^{t} f(t) dt$	$\frac{1}{F(s)}$
	30	S
13.	tf(t)	$-\frac{d}{d}F(s)$
		ds
14.	$\frac{f(t)}{t}$	$\int F(s) ds$
15	f(t+nT)	$E_{i}(s)$
15.		$\frac{1}{1-e^{-sT}}$
16.	f(0)	lim sF(s)
		s→∞
17.	f(∞)	lim sF(s)
		s → 0
18.	$f_1(t)^* f_2(t)$	$F_1(s).F_2(s)$