

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2010/2011

: DIGITAL SYSTEM DESIGN
: BEE 3133
: 3BEE
: NOVEMBER / DECEMBER 2010
: 3 HOURS
: ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS ONLY IN PART B.

THIS PAPER CONSISTS OF NINE (9) PAGES.

PART A

- Q1 Very-Large-Scale Integration (VLSI) is the process of creating integrated circuits by combining thousands of transistor-based circuits into a single chip.
 - (a) State three (3) critical VLSI design considerations.

(3 marks)

- (b) Give three (3) reasons why the CMOS technology leading in IC market. (3 marks)
- (c) Give two (2) differences between top down and bottom up approach.

(4 marks)

- (d) Propose two (2) solutions for these common design problems:
 - (i) The growing number of transistor in IC design.
 - (ii) Cross talk in circuit design.
 - (iii) High interconnect delay.

(6 marks)

(e) The following are VLSI design styles; Full Custom, Application -Specific Integrated Circuit (ASIC), Programmable Logic (PLD, FPGA) and System-on-a chip (SoC). Briefly explain any two (2) of them.

(4 marks)

Q2 Suppose that the test set $w_1w_2w_3w_4 = 0100, 1010, 0011, 1111$ and 0110 are chosen randomly to test the circuit in Figure Q2. Find the percentage of single faults can be detected using these tests.

(20 marks)

PART B

۲

• , . •

Q3	(a)	Deter	mine all the subcircuits defined in the VHDL code in Fig	ure Q3(a). (2 marks)
	(b)	Expla	in the purpose of signal in VHDL code.	(2 marks)
	(c)	Draw the schematic diagram for the circuit represented by the VHDI description in Figure Q3(a). (16 r		VHDL
				(16 marks)
Q4	(a)	that th	a a function, $G = A\overline{C}E + A\overline{C}F + A\overline{D}E + A\overline{D}F + BCD\overline{E}\overline{F}$ the input variables are available in both uncomplemented a lemented forms.	
		(i)	Determine the Boolean expression by using factoring to	echnique. (3 marks)
		(ii)	Determine the Boolean expression by using functional	
			decomposition technique.	(3 marks)
		(iii)	Sketch the circuit for the Boolean expression in Q4(a)(i	ii) and
			calculate the cost.	(5 marks)
	(b)	Map t	he following function in a Karnaugh map.	
		F(a,l	$b, c, d, e) = \Sigma m(0, 3, 4, 5, 6, 7, 8, 12, 13, 14, 16, 21, 23, 24)$	4, 29, 31)
		Based	on the K-map,	

(i) Find the minimum Sum-of-Product. (5 marks) Find the Product-of-Sum equation based on question Q4(b)(i). (ii)

(4 marks)

- Q5 (a) The architecture log VHDL contains the code that is synthesized into hardware. It describes the behavior of the model.
 - (i) Architecture contains the synthesizable code, and must be written correctly. There are three (3) major classifications for architecture declaration. List them.

(3 marks)

- (ii) List two (2) assignment statements for Behavioral Modeling. (2 marks)
- (iii) Concurrent statement is used to assign a value to a signal in an architecture body. VHDL provides four (4) different types of concurrent statements. List these statements.

(2 marks)

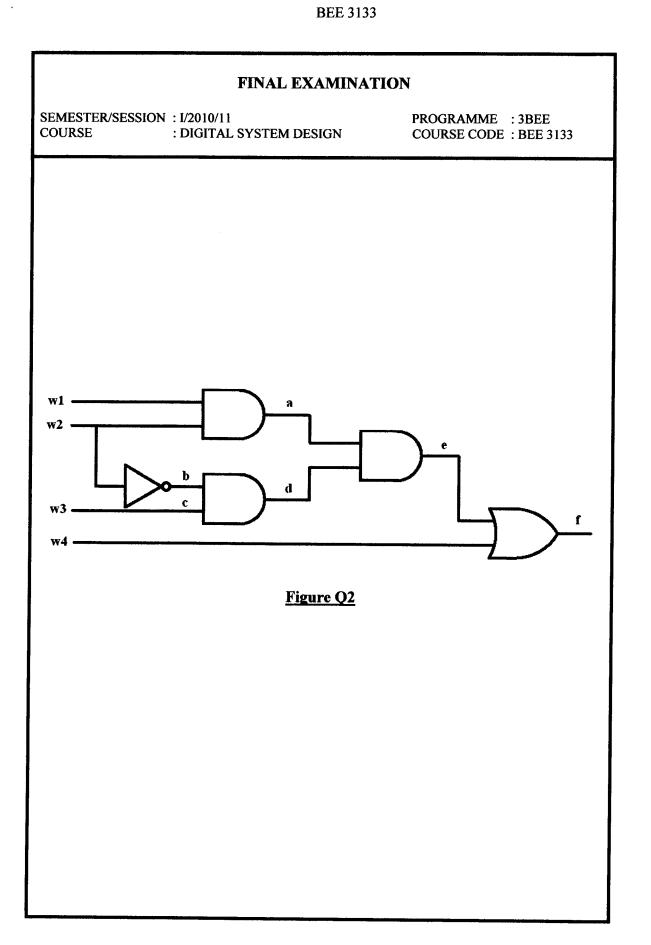
(b) A multiplexer is a logic component that has several inputs but only a single output. The purpose of the multiplexer circuit is to multiplex the *n* data inputs onto the single data output under control of the select inputs. The functionality of 4-to-1 multiplexer (referred as 4:1 mux) can be described in the truth table in Figure Q5(b)(a). The bit represented by S_1 and S_0 selects one of the data inputs as the output of the multiplexer. Construct the VHDL code in architecture statement for the truth table using:

(i)	Selected assignment.	(4 marks)
(ii)	Conditional assignment.	(4 marks)
(iii)	IF statement.	(5 marks)

4

ι.

.


•

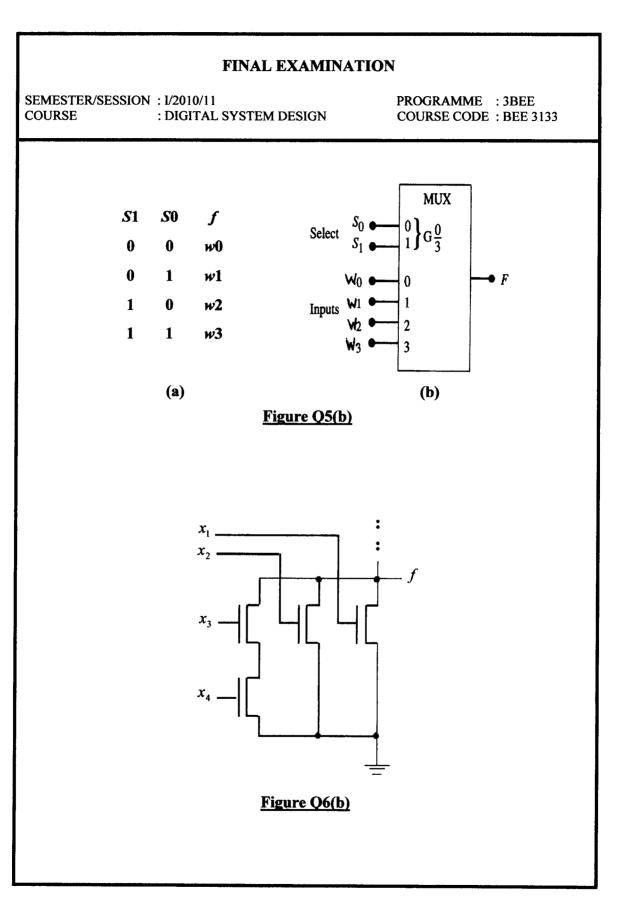
.

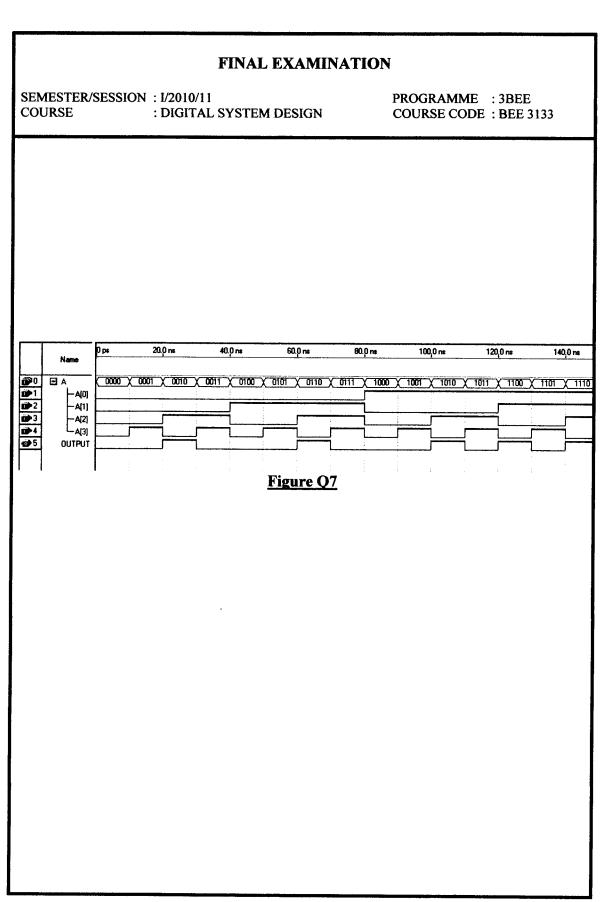
.

Q6	(a)	CMOS stand for Complementary Metal Oxide Semiconductor.				
		(i)	What is the advantage of CMOS structure?	(2 marks)		
		(ii)	Justify your reason in proposing the construction with vis	sual aid. (5 marks)		
	(b)	Figure	e Q6(b) shows half of a CMOS circuit.			
		(i)	Construct truth table for the circuit.	(6 marks)		
		(ii)	Derive the simplest sum-of-products expression for the tr in part $Q6(b)(i)$.	uth table		
				(3 marks)		
		(iii)	Derive the other half that contains the PMOS transistors.	(4 marks)		
Q7	Refer to the waveform in Figure Q7.					
	(a)	Derive	e the simplest Boolean expression by using K-map.	(3 marks)		
	(b)	Constr	ruct minimum transistor level circuit using CMOS technolo	ogy. (6 marks)		
	(c)	Detern	nine either the circuit in Q7(b) is AOI or OAI.	(2 marks)		
	(d)	Draw	the Euler path for the circuit.	(4 marks)		
	(e)	Sketch	the stick diagram for the circuit.	(5 marks)		

5

,


.


FINAL EXAMINATION

SEMESTER/SESSION : I/2010/11 COURSE : DIGITAL SYSTEM DESIGN PROGRAMME : 3BEE COURSE CODE : BEE 3133

LIBRARY ieee; USE ieee.std_logic 1164.all; ENTITY litar IS PORT(w : IN STD LOGIC VECTOR(0 TO 15); s : IN STD LOGIC VECTOR (3 DOWNTO 0); a,b,c,d,e : IN STD LOGIC; f : OUT STD LOGIC); END litar; ARCHITECTURE structure OF litar IS SIGNAL m : STD LOGIC VECTOR(0 TO 3); SIGNAL y : STD_LOGIC_VECTOR(0 TO 3); COMPONENT mux4to1 PORT(w0,w1,w2,w3 : IN STD LOGIC; s : IN STD_LOGIC_VECTOR(1 DOWNTO 0); f : OUT STD LOGIC); END COMPONENT; COMPONENT my chip PORT(x,y : IN STD LOGIC; z : OUT STD LOGIC); END COMPONENT; BEGIN Chip1: my_chip PORT MAP (y(0),y(1),m(0)); Chip2: my_chip PORT MAP (a,b,m(1)); Chip3: my_chip PORT MAP (y(2),y(3),m(2)); $m(3) \le (not c and not d) or e;$ Mux1: mux4to1 PORT MAP (w(0),w(1),w(2),w(3),s(1 DOWNTO 0),y(0)); Mux2: mux4to1 PORT MAP (w(4),w(5),w(6),w(7),s(1 DOWNTO 0),y(1)); Mux3: mux4to1 PORT MAP (w(8),w(9),w(10),w(11),s(1 DOWNTO 0),y(2)); Mux4: mux4to1 PORT MAP (w(12),w(13),w(14),w(15),s(1 DOWNTO 0), y(3));Mux5: mux4tol PORT MAP (m(0),m(1),m(2),m(3),s(3 DOWNTO 2),f); END structure;

Figure Q3(a)

9