

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2009/2010

SUBJECT NAME	:	ELECTRONIC DEVICES AND
		APPLICATIONS

SUBJECT CODE : BEE 2273

COURSE : 2 BEE

EXAMINATION DATE : NOVEMBER 2009

DURATION : 3 HOURS

INSTRUCTION :

: ANSWER <u>FIVE (5)</u> QUESTIONS ONLY.

THIS PAPER CONSISTS OF 10 PAGES

BEE 2273

Q1 (a) The circuit in Figure Q1(a) has been designed to implement a certain relationship between the input and output. Draw the waveform of V_{01} , V_{02} and V_{03} based on the given input, V_i . Assume all Op-Amps are ideal and powered by a +20V and -20V power supply.

(14 marks)

(b) An oscillator circuit in Figure Q1(b) will maintain its oscillation when $A\beta = 1$.

(i) Find R_2 if oscillation frequency, $f_0 = 10$ kHz.

(3 marks)

(ii) If $\beta = 1/3$, find the relationship between R_a and R_b so that this circuit will continuously oscillates.

(3 marks)

Q2 (a) For the circuit in Figure Q2(a), derive the expressions for the voltage gains, $A_1 = v_{0l} / v_{in}$ and $A_2 = v_{02} / v_{in}$.

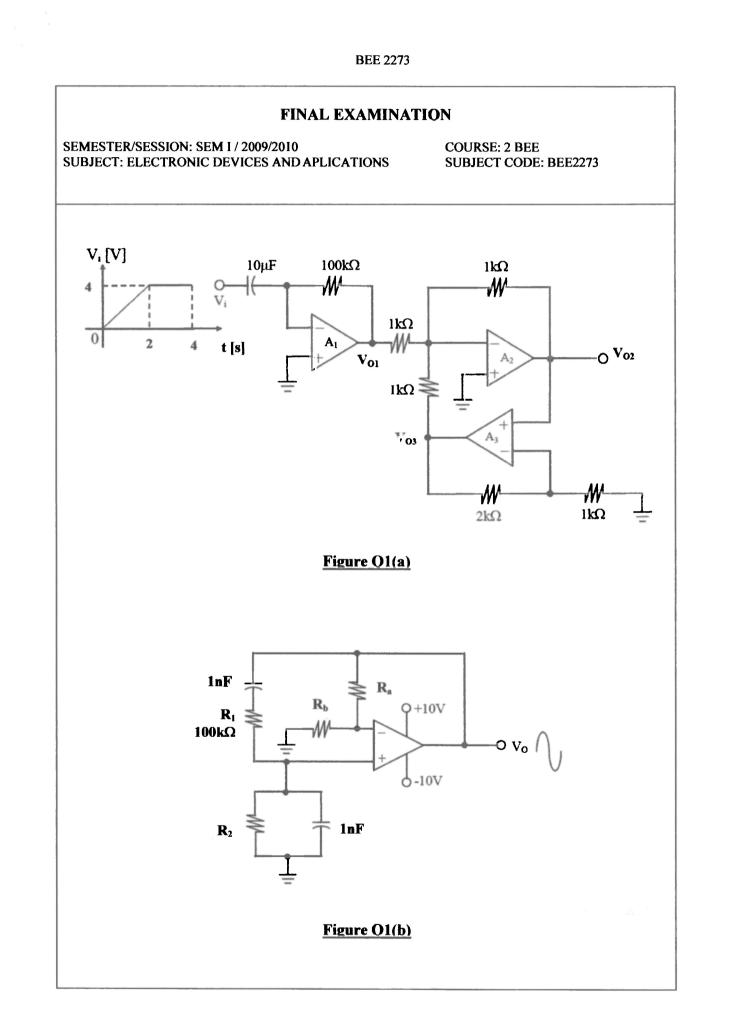
(6 marks)

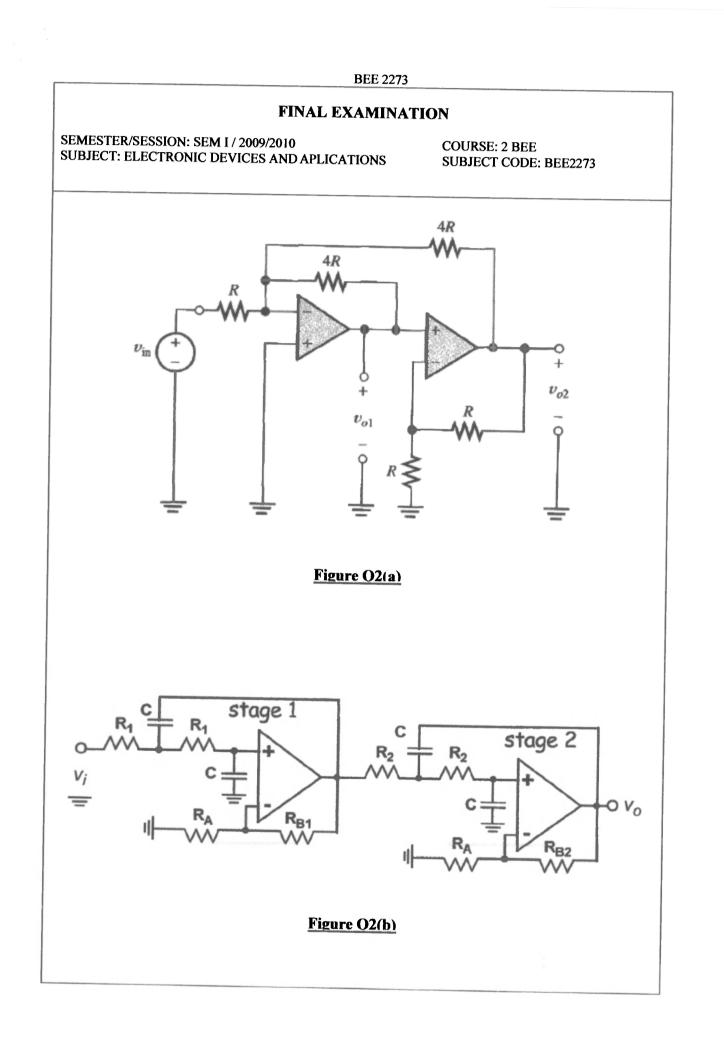
(b) Using Table 1 below, design a filter circuit as in Figure Q2(b), including workable component values that would produce a 4th order Butterworth low pass filter with 4 kHz cutoff frequency. Use the equal components design approach. Choose all capacitors values as 10nF and $R_A = 10k\Omega$.

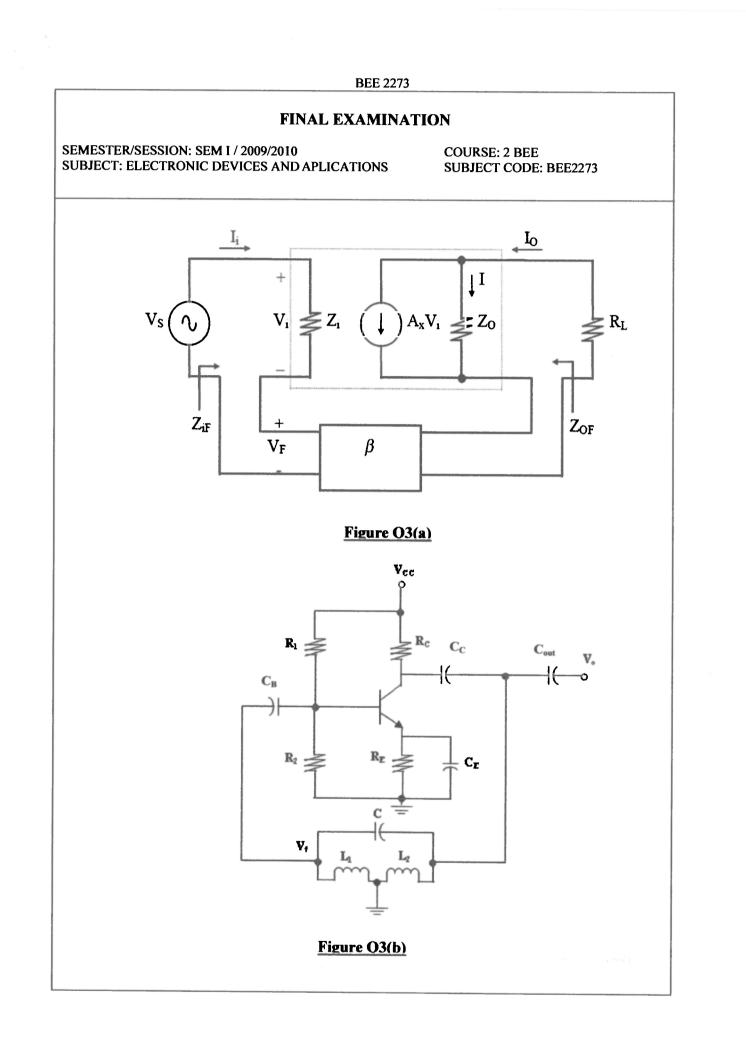
ORDER	ROLL-OFF	1 [#] STAGE		2 nd STAGE			3 rd STAGE			
	DB/DECADE	POLES	DF	$R_{\rm B}/R_{\rm A}$	POLES	DF	R _B /R _A	POLES	DF	R_B/R_A
1	-20	1	Optional							
2	-40	2	1.414	0.586						
3	-60	2	1.00	1	1	1.00	1			
4	-80	2	1.848	0.152	2	0.765	1.235			
5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

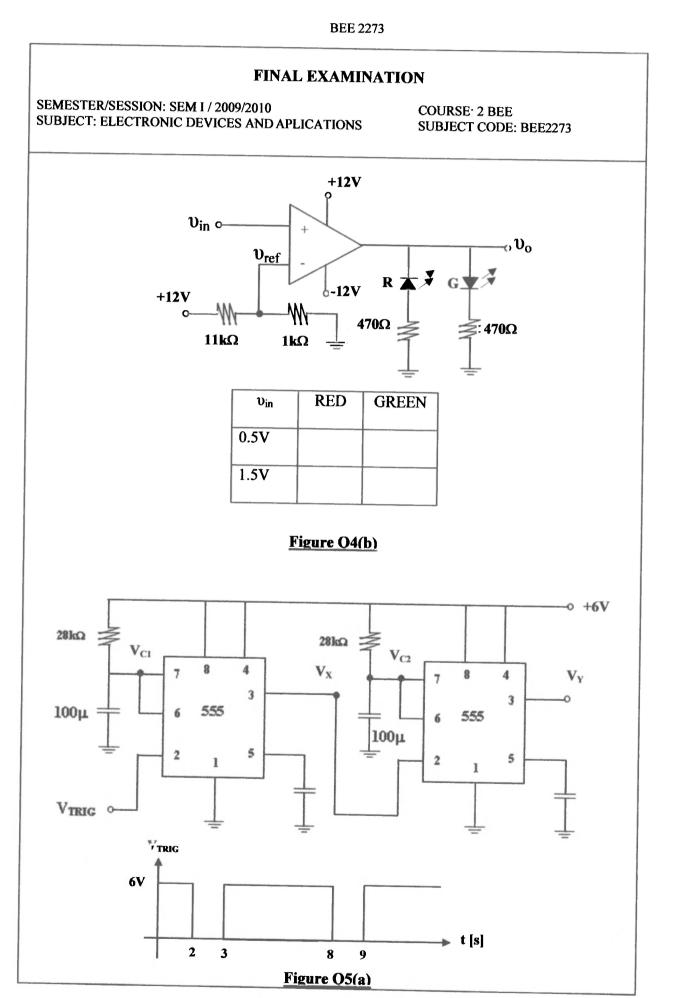
Table 1: Values for the Butterworth Response

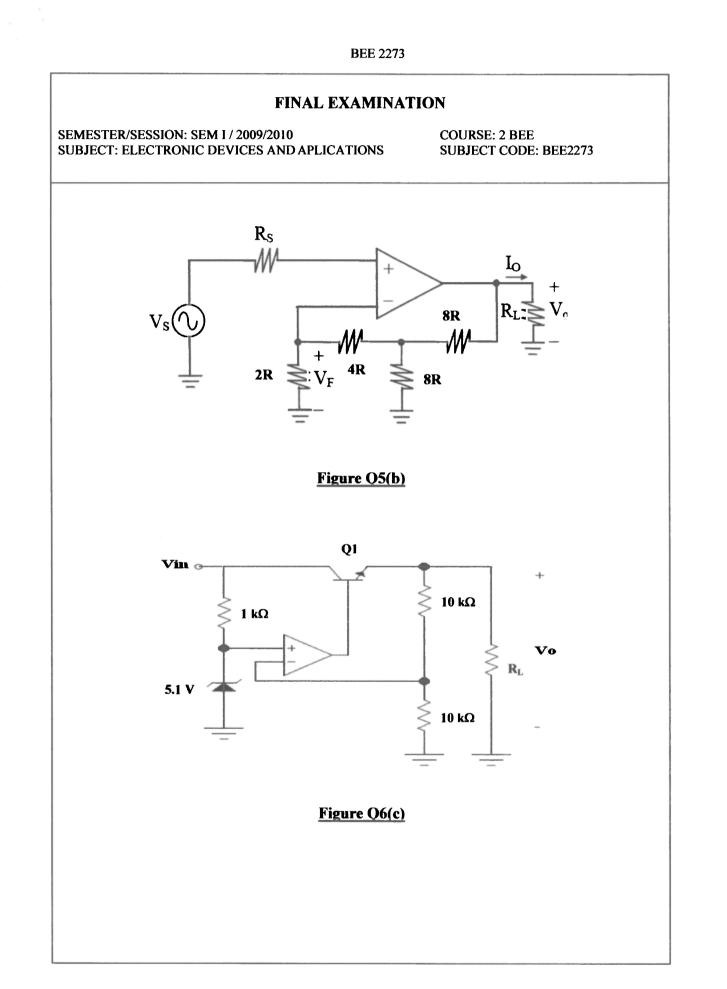
(14 marks)


- Q3 (a) Figure Q3(a) is a block diagram of an amplifier with a negative feedback network has the properties as: input impedance with feedback, $Z_{if} = 1k\Omega$, output impedance with feedback, $Z_{Of} = 200k\Omega$, output impedance without feedback, $Z_{O} = 10k\Omega$, gain with feedback, $A_{f} = 20$, $\omega_{Lf} = 10^{3}$ rad/s and $\omega_{Hf} = 10^{6}$ rad/s.
 - (i) State the disadvantage of using negative feedback and discuss how the negative feedback can improve the frequency response of an amplifier.


(3 marks)


		(ii)	$\begin{array}{l} \text{BEE 2273} \\ \text{Determine the input impedance without feedback, } Z_{i,} \text{ gain without feedback, } \\ \text{A, feedback network, } \beta, \text{ lower cutoff frequency without feedback, } f_L \text{ and } \\ \text{higher cutoff frequency without feedback, } f_H. \end{array} \tag{8 marks}$
		(iii)	Sketch the frequency response for both conditions, with and without negative feedback. Compare the bandwidth values. (5 marks)
	(b)	(i)	Figure Q3(b) shows the oscillator circuit with $L_1 = 125$ mH, $L_2 = 0.125$ mH and C = 0.01F. Determine the feedback gain, β and the amplifier gain, A during the oscillation. (4 marks)
Q4	(a)	the 24	a block diagram of a regulated DC power supply, which is to be powered from 0 volt, 50 Hz mains supply, explain the function of each part of the block m, and sketch the waveforms at every stage of the diagram. (10 marks)
	(b)		rcuit in Figure Q4(b) will ON the LEDs separately based on the output from nparator. Assume the voltage drop across each LED is 2V whenever it is ON.
		(i)	Explain the operation of the circuit. (6 marks)
		(ii)	Fill in the table given with ON or OFF conditions for both RED and GREEN LEDs. (2 marks)
		(iii)	Determine the current through each of 470Ω resistors when the LED is ON. (2 marks)
Q5	(a)	Refer t	o Figure Q5(a),
		(i)	draw and completely label the output V_X , V_{C1} , V_Y and V_{C2} . Show all the calculations. All waveforms must be drawn in their parallel time axes. (10 marks)
		(ii)	differentiate between Astable and Monostable Multivibrator. (2 marks)
	(b)	Refer t (i) (ii)	o circuit in Figure Q5(b), find $\beta = V_f / V_o$ and overall gain, V_o / V_s . state the type of amplifier and feedback topology used.


(8 marks)


		BEE 2273
Q6		mple DC power supply circuit consisting of a transformer (N _p : 1), a b a capacitor as filter with the following specifications: Output current, $I_{dc} - 0.1 A$ Average voltage to the load = 15V Ripple voltage, $V_r(p-p) = 0.4 V$ Forward diode voltage , $V_{diode} = 0.7 V$ Mains supply = 110 V, 60 Hz
	(a) Drav	w and label the DC power supply circuit. (4 m
		ch the output waveforms with values; the peak voltage, $V_o(p)$, the orage, V_{dc} and ripple voltage, $V_r(p-p)$. (4 m
	(c) Dete (i)	ermine: the required transformer turns ratio. (5 m
	(ii)	the filter capacitor value. (3 m
	(iii)	the output of the power supply designed in Q6(a) if a voltage regulator s in Figure Q6(c) is connected to the output of the DC power supply circuit.
		(1½ m
	(iv)	briefly explain what will happen if the output of this voltage registric increases. $(2\frac{1}{2} m)$
Q7	Class A Pov	ver Amplifier is shown in Figure Q7
		the Quiscent points (Q-points) of the amplifier. Hence, draw its DC Loa AC Loadline. (16 m
	(b) Calc	ulate the power delivered to the load R_L and the efficiency. (4 m

