

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2009/2010

SUBJECT NAME: ELECTROMAGNETIC FIELDS AND
WAVESSUBJECT CODE: BEE 2263COURSE: 2 BEEDATE OF EXAMINATION: NOVEMBER 2009DURATION: 3 HOURSINSTRUCTION: ANSWER FIVE (5) QUESTIONS ONLY

THIS PAPER CONSISTS OF 10 PAGES

		BEE 2263	
Q1	(a)	Compare the differences between electrostatic fields and fields. Your answer should include all important laws ar or equations that relate to each of them.	-
	(b)	A current distribution in free space gives rise to the mag \overline{A} and is given by;	netic potential
		$\overline{A} = (2x^2y + yz)\tilde{x} + (xy^2 - xz^3)\tilde{y} - (6xyz - 2x^2y^2)\tilde{z} \text{Wb/m}$	
		(i) Calculate magnetic flux density \overline{B}	(3 marks)
		(ii) Find the magnetic flux through a loop given by $x = 1 \text{ m}, 0 < y < 2 \text{ m}, \text{ and } 0 < z < 2 \text{ m}$	
			(4 marks)
		(iii) Show that $\nabla \bullet \overline{A} = 0$ and $\nabla \bullet \overline{B} = 0$	(4 marks)
Q2	(a)	Two extensive homogeneous isotropic dielectrics meet of For $z \ge 0$, $\varepsilon_{r1} = 2.5$ and $z \le 0$, $\varepsilon_{r2} = 3.2$. A unifor field $E_1 = 2\hat{x} + 4\hat{y} + 3\hat{z} \ kV / m$ exists for $z \ge 0$. Determine	rm electric
		 (i) E₂ for z < 0, (ii) The angles E₁ and E₂ make with the interface. 	(10 marks)
	(b)	If the electric flux density $D_1 = 10\hat{x} - 12\hat{y} + 6\hat{z} \ nC/m^2$	is applied, find
		 (i) The flux density D₂ in dielectric 2. (ii) The angle 0₂ between E₂ and normal. 	(10 marks)
Q3	(a)	Consider an infinitely long line charge with charge dens exists at $y = -3$ m, $x=0$.	ity 4 nC/m
		(i) Determine the direction of electric field intensity due to the line charge. Sketch your diagram.	at the origin (1 mark)
		(ii) Calculate electric field intensity due to the line c measured at the origin.	harge

BEE 2263

(iii)	A charge $Q = 10$ nC exist somewhere along the y-axis. Where
	must you locate Q so that the total electric field is zero at the
	origin?
	(3 marks)

(iv) Suppose instead of the 10 nC charge of part (iii), a charge Q is located at (0, 5 m, 0), what value of Q will result in a total electric field intensity of zero at the origin?

(3 marks)

- (b) A vector field $\overline{D} = r^3 \dot{r} \quad C/m^2$ exist in the region of a cylindrical surface defined by r = 2 m with height extending between z = 0 and z = 5 m. Verify divergence theorem by evaluating the following:
 - (i) $\oint_{S} \overline{D} \bullet d\overline{S}$
 - (ii) $\int (\nabla \bullet \overline{D}) dv$

(5 marks)

(4 marks)

(7 marks)

(5 marks)

Q4 An inductor is formed by winding N turns of a thin conducting wire into a circular loop of radius a. The inductor loop is in the x-y plane with its center at the origin, and it is connected to a resistor R as shown in Figure Q4. In the presence of a magnetic field given by $\overline{B} = B_0(3\dot{y} + 4\dot{z})\sin\omega t$ Wb/m² where ω is the angular frequency, find;

(a)	the magnetic flux	linking a single turn	of the inductor
		0	

- (b) the transformer V_{emf}, given that $N = 15, B_0 = 0.15 \text{ T}$, a = 12 cm and $\omega = 10^3 \text{ rad/s}$
 - the polarity of V_{emf} at t = 0 (5 marks)
- (d) the induced current in the circuit for $R = 1.2 \text{ k}\Omega$.

(4 marks)

Q5

(c)

(a) Show that the magnetic field intensity for semi-infinite line carrying current *I* along the z-axis is given by $\overline{H} = \frac{I}{4\pi r} \hat{\phi} (Am^{-1})$.

(12 marks)

BEE 2263

(b) A thin ring of radius 6 cm is placed on plane z = 2 cm so that its center is (0, 0, 2 cm). If the ring carries 55 mA along a_o , find the magnetic field intensity at,

(i)	(0, 0, -2 cm)
(ii)	(0, 0, 15 cm)

capacitor.

(8 marks)

Q6

(a) Polarization occurs when electric field is applied on a dielectric. Illustrate the polarization process and show quantitatively the impact of polarization on the electric flux density inside the dielectric.

(5 marks)

(b) A parallel plate capacitor is made of two similar rectangular thin conductive sheets of area 6 mm². The plates are separated by a distance of 2 mm and filled with a dielectric of relative permittivity 2.5. A 5 volt dry cell battery is connected between the terminals of the

- (i) Calculate the capacitance of the capacitor
- (ii) What is the electric field intensity in the capacitor?
- (iii) Determine the amount of charge on each plate.
- (iv) Calculate the electric energy density stored in the capacitor.
- (v) Calculate the electric energy stored in the capacitor.

(10 marks)

(c) A student requires an inductor which has a self inductance of 5 mH for his final year project. He uses a solenoid made of insulated copper which has 100 turns. What is the length required for the solenoid if the wire is wound on a cylindrical dowel of radius 2 cm? Propose a method to reduce the number of turns if all other parameters remain unchanged.

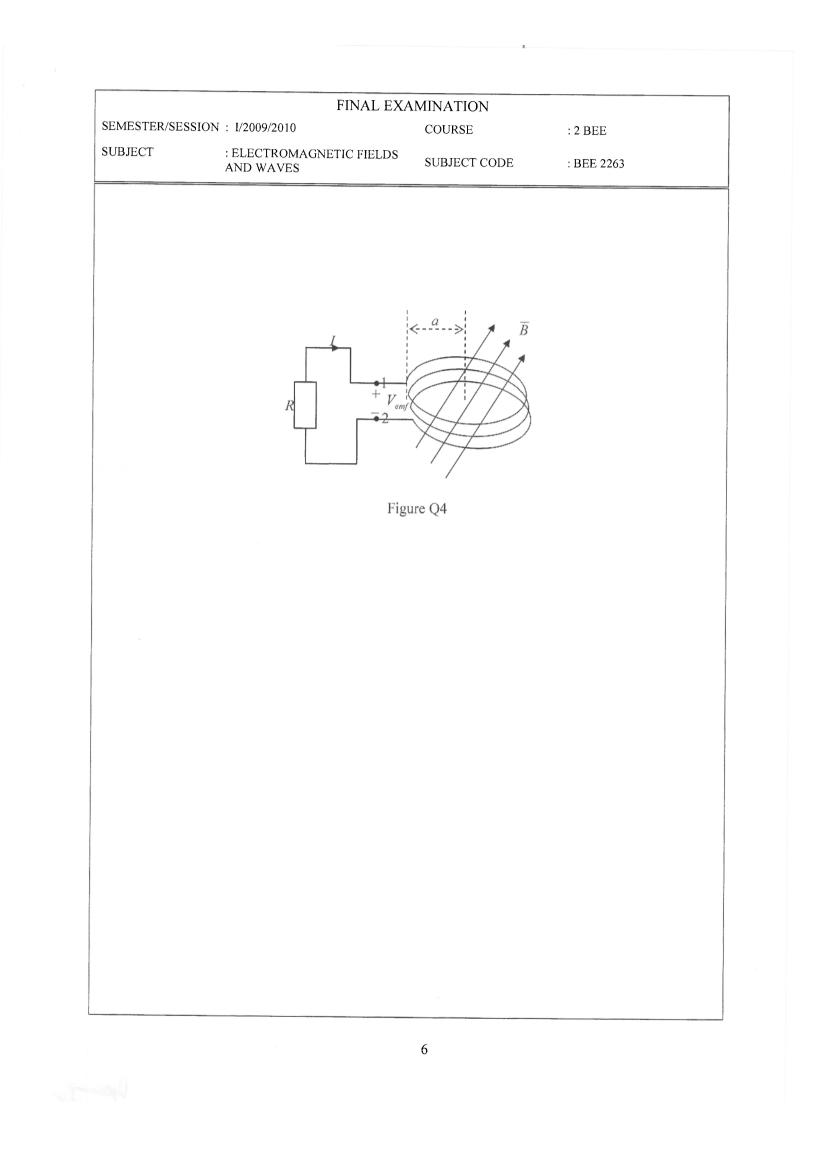
(5 marks)

Q7 (a) List and explain the Maxwell's equations for time varying electric and magnetic fields. Illustrate an experiment that can describe the significance of ONE (1) of the Maxwell's equations.

(8 marks)

- (b) The electric field phasor of a uniform plane wave is given by $\vec{E} = \dot{z} 10 e^{j0.2y}$ (V/m). If the phase velocity of the wave is 1.5 x 10⁸ m/s and the relative permeability of the medium is $\mu_r = 2.4$, find:
 - (i) the wavelength,
 - (ii) the wavenumber,
 - (iii) the frequency f of the wave,

BEE 2263


(iv) the relative permittivity of the medium,

(v) the magnetic field $\vec{H}(y,t)$,

(vi) the average power density carried by the wave.

Plot the $\vec{E}(y,t)$ and $\vec{H}(y,t)$, as a function of y at t=0.

(12 marks)

	FINAL EXA	MINATION		
SEMESTER/SESS	SION : I/2009/2010	COURSE	: 2 BEE	
SUBJECT	: ELECTROMAGNETIC FIELDS AND WAVES	SUBJECT CODE	: BEE 2263	
Gradient				
$\nabla f = \frac{\partial f}{\partial x} \hat{\mathbf{x}} +$	$-\frac{\partial f}{\partial y}\hat{\mathbf{y}}+\frac{\partial f}{\partial z}\hat{\mathbf{z}}$			
$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} +$	$\frac{1}{r}\frac{\partial f}{\partial \phi}\hat{\boldsymbol{\varphi}} + \frac{\partial f}{\partial z}\hat{\boldsymbol{z}}$			
$\nabla f = \frac{\partial f}{\partial R} \hat{\mathbf{R}}$	$+\frac{1}{R}\frac{\partial f}{\partial \theta}\hat{\boldsymbol{\Theta}} - \frac{1}{R\sin\theta}\frac{\partial f}{\partial \phi}\hat{\boldsymbol{\varphi}}$			
Divergence				
$\nabla \bullet \vec{A} = \frac{\partial A_x}{\partial x}$	$+ + \frac{\partial A_v}{\partial y} + \frac{\partial A_z}{\partial z}$			
	$\frac{\partial (rA_r)}{\partial r} \right] + \frac{1}{r} \frac{\partial A_{z}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$			
$\nabla \bullet \vec{A} = \frac{1}{R^2}$	$\frac{\partial \left(R^2 A_R\right)}{\partial R} + \frac{1}{R \sin \theta} \left[\frac{\partial \left(A_\theta \sin \theta\right)}{\partial \theta}\right] + \frac{1}{R}$	$\frac{1}{\sin\theta} \frac{\partial A_{\phi}}{\partial\phi}$		
Curl				,
	$\frac{\mathbf{A}_{\star}}{\mathbf{y}} - \frac{\partial A_{\nu}}{\partial z} \mathbf{\hat{x}} + \left(\frac{\partial A_{\nu}}{\partial z} - \frac{\partial A_{\star}}{\partial x}\right) \mathbf{\hat{y}} + \left(\frac{\partial A_{\nu}}{\partial x} - \frac{\partial A_{\nu}}{\partial x}\right) \mathbf{\hat{y}} + $			
(·	$\frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \widehat{\right)} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_z}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} - \frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}} + \frac{1}{r} \left(\frac{\partial A_r}{\partial r} \right) \widehat{\mathbf{n}$			
$\nabla \times \vec{A} = \frac{1}{R \mathrm{s}}$	$\frac{1}{\ln \theta} \left[\frac{\partial \left(\sin \theta A_{\psi} \right)}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \phi} \right] \hat{\mathbf{R}} + \frac{1}{R} \left[\frac{1}{\sin \theta} \right]$	$\frac{\partial A_R}{\partial \phi} - \frac{\partial \left(RA_{\phi}\right)}{\partial R} \bigg] \hat{\Theta} + \frac{1}{R}$	$\left[\frac{\partial (RA_{\theta})}{\partial R} - \frac{\partial A_{R}}{\partial \theta}\right] \hat{\mathbf{\varphi}}$	
Laplacian				
$\nabla^2 f = \frac{\partial^2 f}{\partial x^2}$	$+\frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$			
$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r}$	$\left(r\frac{\partial f}{\partial r}\right) \div \frac{1}{r^2}\frac{\partial^2 f}{\partial \phi^2} \div \frac{\partial^2 f}{\partial z^2}$			
$\nabla^2 f = \frac{1}{R^2} \frac{1}{R^2}$	$\frac{\partial}{\partial R} \left(R^2 \frac{\partial f}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right)$	$+\frac{1}{R^2\sin^2\theta}\left(\frac{\partial^2 f}{\partial \phi^2}\right)$		

.

EMESTER/SESSI		L EXAMINATION COURSE	: 2 BEE
UBJECT	: ELECTROMAGNETIC FI AND WAVES		: BEE 2263
	Cartesian	Cylindrical	Spherical
Coordinate parameters	<i>x</i> , <i>y</i> , <i>z</i>	r, <i>φ</i> , z	$R, heta, \phi$
Vector \vec{A}	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$	$A_{_{\mathcal{F}}}\hat{\mathbf{r}} + A_{\psi}\hat{\mathbf{o}} + A_{_{\mathcal{F}}}\hat{\mathbf{z}}$	$A_R \hat{\mathbf{R}} + A_{\theta} \hat{\mathbf{\theta}} + A_{\psi} \hat{\mathbf{\phi}}$
Magnitude \overline{A}	$\sqrt{A_x^2 + A_y^2 + A_z^2}$	$\sqrt{A_r^2 + A_{\phi}^2 + A_z^2}$	$\sqrt{{A_{_R}}^2 + {A_{_eta}}^2 + {A_{_\phi}}^2}$
Position vector, \overrightarrow{OP}	$x_1 \hat{\mathbf{x}} + y_1 \hat{\mathbf{y}} + z_1 \hat{\mathbf{z}}$ for point $P(x_1, y_1, z_1)$	$r_1 \hat{\mathbf{r}} + z_1 \hat{\mathbf{z}}$ for point $P(r_1, \phi_1, z_1)$	$R_1 \hat{\mathbf{R}}$ for point $P(R_1, \theta_1, \phi_1)$
Unit vector product	$\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{x}} = 0$ $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{r}} \bullet \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{r}} = 0$ $\hat{\mathbf{r}} \times \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}}$ $\hat{\boldsymbol{\varphi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}}$	$\hat{\mathbf{R}} \bullet \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \bullet \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \bullet \hat{\boldsymbol{\phi}} = 1$ $\hat{\mathbf{R}} \bullet \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \bullet \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \bullet \hat{\mathbf{R}} = 0$ $\hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}}$ $\hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{R}}$ $\hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}}$
Dot product $\vec{A} \bullet \vec{B}$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_{\theta} B_{\theta} + A_{\phi} B_{\phi}$
Cross product $\vec{A} \times \vec{B}$	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\varphi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\Theta}} & \hat{\mathbf{\phi}} \\ A_R & A_\theta & A_\phi \\ B_R & B_\theta & B_\phi \end{vmatrix}$
Differential length, $\vec{d\ell}$	$dx \hat{\mathbf{x}} + dy \hat{\mathbf{y}} + dz \hat{\mathbf{z}}$	$dr\hat{\mathbf{r}}+rd\phi\hat{\mathbf{\phi}}+dz\hat{\mathbf{z}}$	$dR\hat{\mathbf{R}} + Rd\theta\hat{\mathbf{\theta}} + R\sin\thetad\phi\hat{\mathbf{\phi}}$
Differential surface, \vec{ds}	$\vec{ds}_x = dy dz \hat{\mathbf{x}}$ $\vec{ds}_y = dx dz \hat{\mathbf{y}}$ $\vec{ds}_z = dx dy \hat{\mathbf{z}}$	$\vec{ds}_r = rd\phi dz \hat{\mathbf{r}}$ $\vec{ds}_\phi = dr dz \hat{\mathbf{\phi}}$ $\vec{ds}_z = rdr d\phi \hat{\mathbf{z}}$	$\vec{ds}_R = R^2 \sin \theta d\theta d\phi \hat{\mathbf{R}}$ $\vec{ds}_\theta = R \sin \theta dR d\phi \hat{\mathbf{\theta}}$ $\vec{ds}_\phi = R dR d\theta \hat{\mathbf{\phi}}$
Differential volume, \vec{dv}	dx dy dz	r dr dø dz	$R^2 \sin \theta dR d\theta d\phi$

	FINA	L EXAMINATION	
SEMESTER/SESSION	V : I/2009/2010	COURSE	: 2 BEE
SUBJECT	: ELECTROMAGNETIC FI AND WAVES	ELDS SUBJECT CODE	: BEE 2263
Turneformedia	Constitute Vertility	TT ·/ XY	
Transformation Cartesian to	Coordinate Variables	Unit Vectors	Vector Components
Cylindrical	$r = \sqrt{x^2 + y^2}$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$	$A_r = A_x \cos \phi + A_y \sin \phi$
0,111411041	$\phi = \tan^{-1}(y/x)$	$\hat{\boldsymbol{\varphi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{\phi} = -A_x \sin \phi + A_y \cos \phi$
	z = z	$\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_z = A_z$
Cylindrical to	$x = r \cos \phi$	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\phi}}\sin\phi$	$A_x = A_r \cos \phi - A_{\varphi} \sin \phi$
Cartesian	$y = r \sin \phi$	$\hat{\mathbf{y}} = \hat{\mathbf{r}} \sin \phi + \hat{\mathbf{\phi}} \cos \phi$	$A_{v} = A_{r} \sin \phi + A_{\phi} \cos \phi$
	z = z	$\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_z = A_z$
Cartesian to	$R = \sqrt{x^2 + y^2 + z^2}$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$	$A_{R} = A_{x} \sin \theta \cos \phi$
Spherical	$\theta = \tan^{-1}(\sqrt{x^2 + y^2} / z)$	$+\hat{\mathbf{y}}\sin\theta\sin\phi+\hat{\mathbf{z}}\cos\theta$	$+A_{v}\sin\theta\sin\phi+A_{z}\cos\theta$
		$\hat{\mathbf{\Theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$	$A_{\theta} = A_x \cos \theta \cos \phi$
	$\phi = \tan^{-1}(y / x)$	$+\hat{\mathbf{y}}\cos\theta\sin\phi-\hat{\mathbf{z}}\sin\theta$	$+A_{v}\cos\theta\sin\phi - A_{z}\sin\theta$
		$\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{\phi} = -A_x \sin \phi + A_y \cos \phi$
Spherical to	$x = R\sin\theta\cos\phi$	$\hat{\mathbf{x}} = \hat{\mathbf{R}}\sin\theta\cos\phi +$	$A_x = A_R \sin \theta \cos \phi$
Cartesian	$y = R\sin\theta\sin\phi$	$\hat{\boldsymbol{\Theta}}\cos\theta\cos\phi-\hat{\boldsymbol{\varphi}}\sin\phi$	$+A_{\theta}\cos\theta\cos\phi-A_{\phi}\sin\phi$
	$z = R \cos \theta$	$\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi +$	$A_y = A_R \sin \theta \sin \phi$
		$\hat{\boldsymbol{\Theta}}\cos\theta\sin\phi+\hat{\boldsymbol{\varphi}}\cos\phi$	$+A_{\theta}\cos\theta\sin\phi+A_{\phi}\cos\phi$
		$\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to Spherical	$R=\sqrt{r^2+z^2}$	$\hat{\mathbf{R}} = \hat{\mathbf{r}}\sin\theta + \hat{\mathbf{z}}\cos\theta$	$A_{R} = A_{r}\sin\theta + A_{z}\cos\theta$
	$\theta = \tan^{-1}(r/z)$	$\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$	$A_{\theta} = A_{\rm r}\cos\theta - A_{\rm z}\sin\theta$
	$\phi=\phi$	$\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_\phi = A_\phi$
Spherical to	$r = R \sin \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$
Cylindrical	$\phi=\phi$	$\hat{oldsymbol{arphi}}=\hat{oldsymbol{\phi}}$	$A_{oldsymbol{\phi}} = A_{oldsymbol{\phi}}$
	$z = R\cos\theta$	$\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_{z} = A_{R}\cos\theta - A_{\theta}\sin\theta$

REMERTED RESIDNE . 1/200	FINAL EXAMINATION	
SEMESTER/SESSION : 1/200 SUBJECT : ELEC	COURSE	: 2 BEE
	CTROMAGNETIC FIELDS SUBJECT CODE WAVES	: BEE 2263
$Q = \int \rho_{\ell} d\ell,$	$d\overline{H} = \frac{Id\overline{\ell} \times \overline{R}}{4\pi R^3}$	$\overline{E} = \mu I_1 I_2 \int d\bar{\ell}_1 \times (d\bar{\ell}_2 \times \hat{a}_{R_2})$
$Q = \int \rho_s dS,$	7/01	$\overline{F_{1}} = \frac{\mu I_{1} I_{2}}{4\pi} \oint_{L1L2} \frac{d \overline{\ell}_{1} \times (d \overline{\ell}_{2} \times \hat{a}_{R_{21}})}{R_{21}^{2}}$
$Q = \int \rho_v dv$	$Id\overline{\ell} \equiv \overline{J}_s dS \equiv \overline{J}dv$	$\sqrt{\mu/2}$
	$\oint \overline{H} \bullet d\overline{\ell} = I_{enc} = \int \overline{J}_s dS$	$\left \eta \right = \frac{\sqrt{\mu_{\varepsilon}}}{\left[1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right]^{\frac{1}{4}}}$
$\overline{F}_{12} = \frac{Q_1 Q_2}{4\pi\varepsilon_0 R^2} \hat{a}_{R_{12}}$	$\nabla \times \overline{H} = \overline{J}$	$1 + \left(\frac{\sigma}{c_{\alpha}}\right)^{2}$
$\overline{E} = \frac{\overline{F}}{O},$	$\psi_m = \int\limits_s \overline{B} \bullet d\overline{S}$	
2	$\psi_m = \oint \overline{B} \bullet d\overline{S} = 0$	$\tan 2\theta_{\eta} = \frac{\sigma}{\omega\varepsilon}$
$\overline{E} = \frac{Q}{4\pi\varepsilon_{o}R^{2}}\hat{a}_{R}$	$\psi_m = \mathbf{q} \overline{A} \bullet d\overline{\ell}$	$\tan\theta = \frac{\sigma}{\omega\varepsilon} = \frac{\overline{J}_s}{\overline{J}_{s}}$
0	$\nabla \bullet \overline{B} = 0$	64.5
$\overline{E} = \int \frac{\rho_{\ell} d\ell}{4\pi\varepsilon_0 R^2} \hat{a}_R$	$\overline{B} = \mu \overline{H}$	$\delta = \frac{1}{\alpha}$
$\overline{E} = \int \frac{\rho_s dS}{4\pi\varepsilon_0 R^2} \hat{a}_R$	$\overline{B} = \nabla \times \overline{A}$	$\varepsilon_0 = 8.854 \times 10^{-12} \text{ Fm}^{-1}$
	$\overline{A} = \int \frac{\mu_0 I d\overline{\ell}}{4 - R}$	$\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1}$
$\overline{E} = \int \frac{\rho_v dv}{4\pi\epsilon_r R^2} \hat{a}_R$	$\nabla^2 \overline{A} = -\mu_0 \overline{J}$	
$\overline{D} = \varepsilon \overline{E}$, 0	$\int \frac{dx}{\left(x^2 + c^2\right)^{3/2}} = \frac{x}{c^2 \left(x^2 + c^2\right)^{1/2}}$
$\psi_e = \int \overline{D} \bullet d\overline{S}$	$\overline{F} = Q\left(\overline{E} + \overline{u} \times \overline{B}\right) = m \frac{d\overline{u}}{dt}$	
$Q_{enc} = \sqrt{\overline{D} \bullet d\overline{S}}$	$d\overline{F} = Id\overline{\ell} \times \overline{B}$	$\int \frac{x dx}{\left(x^2 + c^2\right)^{3/2}} = \frac{-1}{\left(x^2 + c^2\right)^{1/2}}$
$\rho_v = \nabla \bullet \overline{D}$	$\overline{T} = \overline{r} \times \overline{F} = \overline{m} \times \overline{B}$	
	$\overline{m} = IS\hat{a}_n$	$\int \frac{dx}{(x^2 \pm c^2)^{1/2}} = \ln(x + \sqrt{x^2 \pm c^2})$
$V_{AB} = -\int_{A}^{B} \overline{E} \bullet d\overline{\ell} = \frac{W}{Q}$	$V_{enyf} = -rac{\partial \psi}{\partial t}$	
$V = \frac{Q}{4\pi\varepsilon r}$	$V_{emf} = -\int \frac{\partial \overline{B}}{\partial t} \bullet d\overline{S}$	$\int \frac{dx}{\left(x^2 + c^2\right)} = \frac{1}{c} \tan^{-1}\left(\frac{x}{c}\right)$
	UI UI	$\int \frac{x dx}{(x^2 + c^2)} = \frac{1}{2} ln(x^2 + c^2)$
$V = \int \frac{\rho_{\ell} d\ell}{4\pi \varepsilon r}$	$V_{emf} = \int (\overline{u} \times \overline{B}) \bullet d\overline{\ell}$	
$\oint \overline{E} \bullet d\overline{\ell} = 0$	$I_d = \int J_d d\overline{S}, J_d = \frac{\partial \overline{D}}{\partial t}$	$\int \frac{x dx}{\left(x^2 + c^2\right)^{1/2}} = \sqrt{x^2 + c^2}$
$\nabla \times \overline{E} = 0$	$\gamma = \alpha + j\beta$	
$\overline{E} = -\nabla V$	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$	
$\nabla^2 V = 0$	$\alpha = \omega \sqrt{\frac{\mu\varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega\varepsilon}\right]^2 - 1}$	
$R = \frac{\ell}{\sigma S}$		
	$\beta = \omega \sqrt{\frac{\mu\varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega\varepsilon}\right]^2 + 1}$	
$I = \int \overline{J} \bullet dS$	$1 2 [V [\omega\varepsilon]]$	