

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

: GRAPHICS PROGRAMMING

COURSE CODE : BIT 20203

PROGRAMME

: BIT

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

CONFIDENTIAL

Q1 State THREE (3) differences between raster image and vector image.

(6 marks)

Q2 (a) Explain what is meant by rigid body transformation.

(4 marks)

(b) List **TWO** (2) rigid body transformation.

(4 marks)

- Suppose a 2-dimensional clipping window has its lower left corner at A(20, 20) and its upper right corner at C(90, 90). There are 2 lines P_1P_2 with $P_1(10, 15)$ $P_2(80, 80)$ and P_2P_3 with $P_3(30, 95)$ in the window. By using Cohen-Sutherland line clipping algorithm,
 - (a) find the region codes for the endpoints P_1 , P_2 and P_3 .

(6 marks)

(b) calculate the new endpoints P_1' and P_3' .

(10 marks)

(c) draw the output that will be displayed in the window.

(4 marks)

Q4 Given below is an OpenGL code to generate a square.

```
glBegin(GL_QUADS);
    glVertex2i(50,50);
    glVertex2i(100,50);
    glVertex2i(100,100);
    glVertex2i(50,100);
glEnd();
```

(a) By using the homogeneous coordinate, write the individual transformation matrices to implement the following transformation

```
glRotatef(45.0f, 0.0f, 0.0f, 1.0f);
glScalef(0.5, 0.5, 1.0f);
glTranslatef(100.0f, 0.0f, 0.0f);
```

(6 marks)

(b) Calculate the new position of the square if it were subjected to transformations in Q4 (a).

(8 marks)

CONFIDENTIAL

CONFIDENTIAL

(c) Sketch an output display of the square at it's initial position and after performing the transformation.

(4 marks)

Q5 (a) Figure Q5 shows a 2D image of a house. Identify any THREE (3) properties of a 3D object that can be used to transform the image into a 3D object.

(6 marks)

Figure Q5

(b) Based on your anwsers in **Q5** (a), describe how the properties can be used to tranform the 2D image into a 3D object.

(9 marks)

(c) Suggest a projection type to display the 3D object and justify your selection.

(3 marks)

- END OF QUESTION -

