

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER I **SESSION 2019/2020**

COURSE NAME

: FUZZY SYSTEM DEVELOPMENT

COURSE CODE

: BIT 33703

PROGRAMME CODE : 3 BIT

EXAMINATION DATE : DECEMBER 2019/ JANUARY 2020

**DURATION** 

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS



THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

Q1 (a) Describe briefly a membership function of a fuzzy set.

(4 marks)

(b) What is the difference between classical rules and fuzzy rules?

(4 marks)

Q2 By using a diagram, explain the architecture of fuzzy system.

(10 marks)

Q3 In a survey, students are compared based on their score marks and activity participation. A universe of discourse of score marks is,

 $X = \{0, 20, 40, 60, 80, 100\}$ . The standard discrete form of fuzzy set for marks  $\tilde{S}_1$  and activity participation  $\tilde{S}_2$  are as follows:

$$\widetilde{S}_1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1.0}{80} + \frac{1.0}{100} \right\}$$

$$\widetilde{S}_2 = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1.0}{100} \right\}$$

Find the following membership functions using standard fuzzy operations.

(a)  $\mu_{\tilde{S}_1} \cup \mu_{\tilde{S}_2}(x)$ 

(2 marks)

(b)  $\mu_{\widetilde{S}_1} \cap \mu_{\widetilde{S}_2}(x)$ 

(2 marks)

(c)  $\mu_{\overline{\widetilde{S}}_1 \cup \widetilde{S}_1}(x)$ 

(2 marks)

(d)  $\mu_{\bar{S}_1 \cap \bar{S}_1}(x)$ 

(2 marks)

TERBUKA

Q4 TechnyCorp is planning a new product and has created the Fuzzy Associative Matrix as illustrated in **Table 1** to relate demand and manufactured cost to price. The following trapezoidal/triangular normalized membership functions have been estimated.

| Demand (in milli                    | ons of units annually) |  |  |  |  |
|-------------------------------------|------------------------|--|--|--|--|
| Small                               | {100, 1 300, 0}        |  |  |  |  |
| Large                               | {150, 0 350, 1}        |  |  |  |  |
| Manufactured Cost (in yen per unit) |                        |  |  |  |  |
| Cheap                               | {10, 1 20, 0}          |  |  |  |  |
| Expensive                           | {12, 0 24, 1}          |  |  |  |  |
| Price (in cost per unit)            |                        |  |  |  |  |
| Low                                 | {20, 1 35, 0}          |  |  |  |  |
| Medium                              | {25, 0 35, 1}          |  |  |  |  |
| High                                | {35, 0 50, 1}          |  |  |  |  |

Table 1: Fuzzy Associative Matrix

| Price  |                   |           |  |
|--------|-------------------|-----------|--|
|        | Manufactured Cost |           |  |
| Demand | Cheap             | Expensive |  |
| Small  | Low               | Medium    |  |
| Large  | Medium            | High      |  |

Answer the following questions:

(a) Design a fuzzy system which accommodates the given situation.

(4 marks)

(b) Construct the rule base statements for the given situation.

(8 marks)

- (c) Draw the membership functions graphs for all the fuzzy input(s) and output.

  (12 marks)
- (d) If the Demand Forecast = 250 and the Manufactured Cost Forecast = 15, decide upon Price using the max-min technique and centroid defuzzification (Estimate your own centroid location).

(10 marks)



Q5 Answer the following based on Table 2.

Table 2: BMI categories

| Variable | Categories     | Range                 |  |
|----------|----------------|-----------------------|--|
| Height   | Short          | Less than 5 feet      |  |
|          | Medium         | 5' 3½ " to 5' 88.5½ " |  |
|          | Tall           | Greater than > 6 feet |  |
| Weight   | Underweight    | < 110lbs.             |  |
|          | Normal         | 110 lbs to 150 lbs    |  |
|          | Overweight     | Greater than 150      |  |
| BMI      | Underweight    | Less than 18.5        |  |
|          | Healthy weight | 18.5 – 24.9           |  |
|          | Overweight     | More than 25          |  |

(a) Draw a fuzzy system design using suitable diagram.

(4 marks)

(b) Identify and write the linguistic variable and the linguistic value.

(12 marks)

(c) Draw a membership function graph for each system inputs and output based on **Table 2**.

(15 marks)

(d) Construct fuzzy rule based on the Fuzzy Associative Memory (FAM) in Figure Q5(d).

| Height      | Short       | Medium      | Tall       |
|-------------|-------------|-------------|------------|
| Weight      |             |             |            |
| Underweight | Underweight | Underweight | Healthy    |
| Normal      | Underweight | Healthy     | Healthy    |
| Overweight  | Overweight  | Overweight  | Overweight |

Figure Q5(d)

(9 marks)



- END OF QUESTIONS -