

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

DATA MINING

COURSE CODE

: BIT 33603

PROGRAMME CODE

: BIT

EXAMINATION DATE

DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

A) ANSWER ALL QUESTIONS

B) PLEASE WRITE YOUR

ANSWERS IN THIS QUESTION

BOOKLET

TERBUKA

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

Q1

(a)	Dividing the customers of a company according to their profitability. (2 mar)
	Answer:
(b)	Computing the total sales of a company. Answer: (2 mark
(c)	Sorting a student database based on student identification numbers. (2 marl
	Answer:
d)	Predicting the outcomes of tossing a (fair) pair of dice. Answer: (2 mark
e)	Predicting the future stock price of a company using historical records. (2 mark

Q2 Table 1 shows a dataset for making decision to buy computer.

Table 1: Buy Computer Dataset

ID	Age	Income	Student	Credit Rating	class: buy_ computer
1	<=30	high	no	fair	no
2	<=30	high	no	good	no
3	3140	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	good	no
7	3140	low	yes	good	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	good	yes
12	3140	medium	no	good	yes
13	3140	high	yes	fair	yes
14	>40	medium	no	good	no

(a) Build a decision tree using Information Gain as the attribute selection measure. The entropy for the root node is given in Table 2.

Table 2: Entropy for Root Node

Attribute	Average Entropy
Age	0.6935
Income	0.9110
Student	0.7885
Credit Rating	0.8922

(20 marks)

Predict	the class ed in Q2(a)	of the foll	lowing ne	ew examp	ole using	g the de	cision
	0, income=	medium, st	:udent=ye	s, credi	t_rating	g=fair.	(5 ma
Answe	r: 						

TERBUKA

Q3 Figure Q3 shows a distance matrix of a dataset. Suppose the initial seeds are A1, A4, and A8. Show the new clusters based on the k-means algorithm for 1 epoch

only.

Answer:

	Al	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	√65	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	√29	√29
A7							0	√58
A8								0

FIGURE Q3

(20 marks)

Jutline the m	ajor research cl	hallenges of d	ata mining in	one specific	application

Outline the major research challenges of data mining in one specific application domain, such as stream/sensor data analysis, spatio-temporal data analysis, or bioinformatics. Choose **ONE** (1) domain only.

Answer:		(5 marks)

- END OF QUESTIONS -

TERBUKA