

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2018/2019**

COURSE NAME : FUZZY SYSTEM DEVELOPMENT

COURSE CODE : BIT 33703

PROGRAMME CODE : 3 BIT

EXAMINATION DATE : JUNE / JULY 2019

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

TERBUKA

BIT 33703

- Q1 (a) Give the significance of having fuzzy set theory in addition to the probability theory. (2.5 marks)
 - (b) Give **TWO** (2) limitation of classical probability theory in providing a comprehensive methodology for dealing with uncertainty and imprecision. (5 marks)
 - (c) Differentiate between randomness and fuzziness.

(5 marks)

Q2 (a) Compute the support and 0.5-cut for the fuzzy set shown in Figure Q2. The discretized form of the fuzzy set Al="possmall" can be written as follows:

$$A_{1} = \begin{cases} (0,0), (\pi/16,0.25), (\pi/8,0.5), (3\pi/16,0.75), (\pi/4,1.0), \\ (5\pi/16,0.75), (3\pi/8,0.5), (7\pi/16,0.25), (\pi/2,0) \end{cases}$$

(4 marks)

BIT 33703

(b) In a survey, students are compared based on their score marks and activity participation. A universe of discourse of score marks is $X = \{0, 20, 40, 60, 80, 100\}$. The standard discrete form of fuzzy set for marks \tilde{S}_1 and activity participation \tilde{S}_2 are as follows:

$$\widetilde{S}_{1} = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1.0}{80} + \frac{1.0}{100} \right\}$$

$$\widetilde{S}_{2} = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1.0}{100} \right\}$$

Find the following membership functions using standard fuzzy operations.

(i) $\mu_{\widetilde{S}_1} \cup \mu_{\widetilde{S}_2}(x)$

(2 marks)

(ii) $\mu_{\widetilde{S}_1} \cap \mu_{\widetilde{S}_2}(x)$

(2 marks)

(iii) $\mu_{\overline{\widetilde{S}}_1 \cup \widetilde{S}_1}(x)$

(2 marks)

(iv) $\mu_{\overline{\widetilde{S}}_1 \cap \widetilde{S}_1}(x)$

(2 marks)

BIT 33703

Q3 Consider a Takagi - Sugeno type fuzzy system with two inputs and one output. The rules are given as follows:

Rule 1: if
$$X_1$$
 is small and X_2 is low then $y=0.5X_1+0.5X_2$ Rule 2: if X_1 is small and X_2 is high then $y=X_1+0.5X_2$ Rule 3: if X_1 is big and X_2 is low then $y=X_1+X_2$ Rule 4: if X_1 is big and X_2 is high then $y=2X_1+X_2$

The weight of i^{th} rule is $w_i(x_1, x_2) = \mu_{X_1}(x_1) * \mu_{X_2}(x_2)$.

The fuzzy membership functions of the input variables are illustrated in **Figure Q3**.

- (a) Use the weighted average method to compute the output of the controller for $X_1 = 65$ and $X_2 = 20$. (6 marks)
- (b) State the rationale why the weighted average method is applicable to compute the solution in Q4 (a). (2 marks)

Q4 Techny Corp is planning a new product and has created the Fuzzy Associative Matrix as illustrated in **Table 1** to relate demand and manufactured cost to price. The following trapezoidal/triangular normalized membership functions have been estimated.

Demand (in	millions of	units	annually)
Small	{100	, 1	300, 0}
Large	{150	, 0	350, 1}
Manufacture	d Cost (in	yen per	unit)
	{10,		20, 0}
Expen	sive {12,	0	24, 1}
Price (in c	ost per uni	t)	
Low	{20,		35, 0}
Mediu	m {25,	0	35, 1}
High	{35,	0	50, 1}

Table 1: Fuzzy Associative Matrix

Price			
	Ma	Manufactured Cost	
Demand	Cheap	Expensive	
Small	Low	Medium	
Large	Medium	High	

Answer the following questions:

(a) Design a fuzzy system which accommodates the given situation.

(4 marks)

(b) Construct the rule base statements for the given situation.

(4 marks)

- (c) Draw the membership functions graphs for all the fuzzy input(s) and output. (12 marks)
- (d) If the Demand Forecast = 250 and the Manufactured Cost Forecast = 15, decide upon Price using the max-min technique and centroid defuzzification (Estimate your own centroid location).

(10 marks)

BIT 33703

- Q5 Assume that there are two input and one output fuzzy variables for a fuzzy mechanical pencil system. Each fuzzy input and output variables comprise of three fuzzy labels.
 - (a) Draw a membership function graph for fuzzy variable length, based on the following fuzzy function.

short(x) =
$$\frac{1, & \text{if } 0 < x < 1}{2} \\ 0, & \text{if } 1 < x < 3$$

$$|\int_{\frac{1}{2}}^{0}, & \text{if } x < 1 \\ \frac{(x-1)}{2}, & \text{if } 1 \le x \le 3 \\ medium(x) = 1, & \text{if } 3 < x < 5 \\ \frac{(7-x)}{2}, & \text{if } 5 \le x \le 7 \\ 0, & \text{if } x > 7 \\ 0, & \text{if } x < 5 \\ long(x) = \frac{(x-7)}{2}, & \text{if } 5 \le x \le 7 \\ 1, & \text{if } x > 7 \\ | 0, & \text{if } x < 5 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7 \\ | 0, & \text{if } x < 7$$

(7 marks)

(b) Find the membership values for all fuzzy labels for length is 2cm. (3 marks)

(c) Draw a membership function graph for fuzzy variable head_size, based on the following fuzzy function.

$$small(x) = \begin{cases} 1, & \text{if } 0 < x < 0.3\\ \frac{(0.5 - x)}{2} & \text{if } 0.3 < x < 0.5\\ 0, & \text{if } x > 0.5 \end{cases}$$

$$log(x) = \begin{cases} 0, & \text{if } x < 0.3 \\ \frac{(x - 0.3)}{0.2}, & \text{if } 0.3 \le x \le 0.5 \\ 1, & \text{if } 0.5 < x < 0.7 \\ \frac{(0.9 - x)}{0.2}, & \text{if } 0.7 \le x \le 0.9 \\ 0, & \text{if } x > 0.9 \\ 0, & \text{if } x < 0.7 \end{cases}$$

$$big(x) = \begin{cases} 0, & \text{if } x < 0.7 \\ \frac{(x - 0.9)}{0.2}, & \text{if } 0.7 \le x \le 0.9 \\ 1, & \text{if } x > 0.9 \end{cases}$$

(7 marks)

- (d) Find the membership values for all fuzzy labels for head_size 0.4mm. (3 marks)
- (e) Construct a Fuzzy Associative Matrix based on answer in Q5(b) and Q5(c) by applying MIN operator. (7.5 marks)
- (f) Find Centre of Area (COA) for length 2cm and head_size 0.4mm. The Out_Length_Lead of pencil represents the output for fuzzy intelligent mechanical pencil system as shown in Figure Q5(f).

(10 marks)

- END OF OUESTIONS -

CONFIDENTIAL TERBUKA