

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2017/2018

COURSE NAME

ALGORITHM AND COMPLEXITIES

COURSE CODE

BIE 20303

PROGRAMME CODE

BIP

EXAMINATION DATE

DECEMBER 2017 / JANUARY 2018

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

- Q1 (a) Write an algorithm for quick sort for a set of numbers $\{a_1, ..., a_n\}$. (5 marks)
 - (b) Estimate the time complexity of the algorithm as in Q1(a) in the best case analysis based on order of magnitude (5 marks)
- Q2 (a) Let S_n be a sequence of 5, 8, 11,, (3n+2). Find a series of S_n . (6 marks)
 - (b) Write a recursive algorithm to answer **Q2(a)**. (4 marks)
- Q3 (a) Let f be an increasing function that satisfies the recurrence relation f(n) = a*f(n/b) + c

Show that whenever n is divisible by b, where $a \ge 1$, b is an integer greater than 1, and c is a positive real number. Then

$$f(n)$$
 is $O(\log n)$ when $a = 1$. (6 marks)

(b) Find f(n) when $n = 2^k$, where f satisfy the following recurrence relation f(n) = f(n/2) + 5 with f(1) = 1.(4 marks)

TERBUKA

Q4 (a) Write a Dijkstra's algorithm for weighted graph issue.

(4 marks)

(b) Find the length of shortest path between the vertices a and z in the weighted graph in Figure Q4. Show the steps.

(6 marks)

Figure Q4

Q5 (a) Suppose that a computer can execute an operation of an algorithm in 10^{-15} seconds. What is the largest size problem that can be solved on such machine for different durations and running times for **Table 1**?

(6 marks)

Table 1: The largest size problems that can be solved

	n	n ²	n ³	2 ⁿ
1 hour				
10 hours				
100 hours				
1000 hours				

(b) Convert the satisfiable statement $(A \cup B) \rightarrow (C \rightarrow D)$ into conjunctive normal form (CNF), where A, B, C and D are literals.

(4 marks)

- END OF QUESTION® -