

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2011/2012

COURSE NAME : GRAPHIC PROGRAMMING

COURSE CODE : BIT 2023 / BIT 20203

PROGRAMME : BACHELOR OF INFORMATION

TECHNOLOGY

EXAMINATION DATE : JANUARY 2012

DURATION : 2 HOURS AND 30 MINUTES

INSTRUCTION : ANSWER ALL QUESTION.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

PART A

Instruction: Answer	ALL	questions.
---------------------	-----	------------

		•
Q1	Fill in	the blank to complete the statement.
	(a)	LCD is an example of a display.
	(b)	An surface can be described as an extension of a spherical surface, where the radius in 3 mutually perpendicular directions can have different values.
	(c)	Scaling transformation with the scale parameter of 0.5 will make the transformed object
	(d)	For Midpoint circle's algorithm, the next pixel position is (x_k+1, y_k+1) if the decision parameter is
	(e)	Parts of objects that are intended to appear farther from the viewer are displayed at intensity.
		(10 marks)
PART	В	
Instruc	ction: A	nswer ALL questions.
Q2	Descri	be the function for each OpenGL statement below.
	(a)	glClearColor(1.0,1.0,1.0); (2 marks)
	(b)	<pre>glEnd(); (2 marks)</pre>
	(c)	glRotatef(1.0,1.0,0.0,0.0) (2 marks)
	(d)	glTranslatef(4.0,0.0,0.0);

(2 marks)

Q3 (a) Show with a sketch, the result after the concave polygon in Figure Q3 (a) being clipped using Weiler-Atherton algorithm.

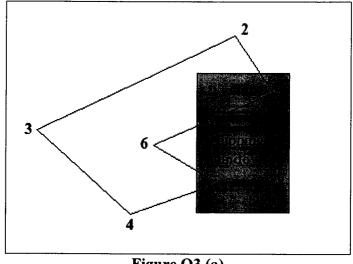
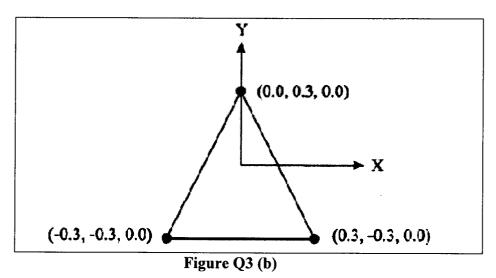



Figure Q3 (a)

(5 marks)

(b) Write a code segment using the GL_LINE_LOOP function to create a triangle as shown in Figure Q3 (b).

(10 marks)

(c) Fill in the blank with the missing commands/parameters in the program.

(10 marks)

```
void
                   (void)
{
         glClear (GL_COLOR_BUFFER_BIT);
         glColor3f(___,___,___); //fill blue color
glPointSize(40.0);
         glBegin(GL_POINTS);
         glVertex2f(80.0f,150.0f);
         glEnd();
         glFlush();
int main (int argc, char **argv)
         glutInit(&argc,__
                               );
         glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
         glutInitWindowPosition (350,50);
         glutInitWindowSize(400,300);
                     (" My Blue Dot ");
         init();
         glutDisplayFunc(______);
         glutMainLoop();
         return 0;
}
```

Q4 (a) You are given two endpoints P1 = (-15,-9) and P2 = (-10,-5). Using Bresenham's line algorithm, calculate each pixel coordinate along the line segment P1 to P2. Please provide your workflow to derive the answer.

(15 marks)

Decision parameters:

$$\begin{array}{lll} P_0 &=& 2\Delta y &-& \Delta x \\ P_{k+1} &=& P_k &+& 2\Delta y &-& 2x\Delta \\ P_{k+1} &=& P_k &+& 2\Delta y \end{array}$$

Sample workflow:

k	P _k	(x_{k+1}, y_{k+1})	
İ			

The pixel coordinates starting from P1 to P2 are:

(b) Given the following code segment:

```
void drawing()
      glBegin(GL QUADS);
      glColor3f(1.0, 0.0, 0.0);
      glVertex3f(-0.5, -0.5, 0.5);
      glVertex3f( 0.5, -0.5, 0.5);
glVertex3f( 0.5, 0.5, 0.5);
      glVertex3f(-0.5, 0.5, 0.5);
      glVertex3f(-0.5, -0.5, -0.5);
glVertex3f(-0.5, 0.5, -0.5);
      glVertex3f( 0.5, 0.5, -0.5);
      glVertex3f( 0.5, -0.5, -0.5);
      glColor3f(0.0, 1.0, 0.0);
      glVertex3f(-0.5, -0.5, 0.5);
      glVertex3f(-0.5, 0.5, 0.5);
      glVertex3f(-0.5, 0.5, -0.5);
      glVertex3f(-0.5, -0.5, -0.5);
      glVertex3f(0.5, -0.5, -0.5);
      glVertex3f( 0.5, 0.5, -0.5);
      glVertex3f( 0.5, 0.5, 0.5);
      glVertex3f( 0.5, -0.5, 0.5);
      glColor3f(0.0, 0.0, 1.0);
      glVertex3f(-0.5, 0.5, 0.5);
      glVertex3f( 0.5, 0.5, 0.5);
      glVertex3f( 0.5, 0.5, -0.5);
      glVertex3f(-0.5, 0.5, -0.5);
      glVertex3f(-0.5, -0.5, 0.5);
      glVertex3f(-0.5, -0.5, -0.5);
      glVertex3f( 0.5, -0.5, -0.5);
glVertex3f( 0.5, -0.5, 0.5);
      glEnd();
}
```

Sketch the output of the code segment (including the color information) above.

(12 marks)

BIT2023 / BIT20203

PART C

Instruction: Answer ALL questions.

- Q5 Given the original point of a square is P1 (2,4), P2 (4,4), P3 (4,2) and P4 (2,2).
 - (a) Scale the object using $s_x = s_y = 2$ about a fixed point $(x_f, y_f) = (3, 3)$ and give the new points after the transformation.

(10 marks)

(b) Then, shear the scaled object using $sh_y = 3/2$ and $x_{ref} = -1$ in the y direction and give the new points after the transformation.

(5 marks)

Q6 Given input $r_y = 8$, $r_x = 6$ and ellipse center (-5, 6). Assume your objective is to find the pixels for the whole ellipse. Write a step by step algorithm to achieve the objective.

(15 marks)