

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESI 2019/2020

COURSE NAME

STATIC AND DYNAMIC

COURSE CODE

BFC10103

PROGRAMME CODE :

BFF

EXAMINATION DATE :

DECEMBER 2019/JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

Q1	(a)	Brief	ly explain with suitable sketch.		
		(i)	Moment		
					(4 marks)
		(ii)	Couple		(4 marks
	(b)	Two show	concentrated forces and one in Figure Q1(i).	moment act on the simply	supported beam as
		(i)	Calculate the resultant force of	of the beam	
					(10 marks)
		(ii)	Determine the distance of resu	ıltant force from point A.	(7 marks)
02	<i>(</i>)				
Q2	(a)	condi	h and label the free body diaş tion and its loading as highlight	gram of the structural elemed in Figure Q2(i), (ii) and	nent for the support (iii).
					(3 marks)
	(b)	at B, total	antilever beam shown in Figur vertical load of 40 kN at C an length of the cantilever beam ded in the wall at point A.	d moment of 100 kNm at 1	D, respectively. The
		(i)	Sketch the free body diagram	of the cantilever beam.	(4 marks)
		(ii)	Calculate the reaction forces a	t point A.	(6 marks)
	(c)	shows coeffi frictio	blocks are in contact with each in Figure Q2(v) . The plane is cients of block A and B are μ n coefficients for block C are en these three blocks. Convert the	inclined at an angle of 20 $\alpha_s = 0.3$ and $\mu_k = 0.2$ respective $\mu_s = 0.4$ and $\mu_k = 0.3$.	degrees. The friction ectively. While, the
		(i)	Calculate the resultant normal F_s of each block.	force, N and the value of	static friction force,
			***		(6 marks)
		(ii)	Determine whether each block of kinetic friction force, F_k .	s is in equilibrium and then	calculate the value
				N A A A A	(C man)

CONFIDENTIAL

BFC10103

Q3	(a)	Briefly explain in what condition of centre of gravity and centroid in situation of:			
		(i) coincide (2 marks)			
		(ii) do not coincide (2 marks)			
	(b)	Determine the centroid of composite area in Figure Q3(b). (11 marks)			
	(c)	Calculate the moment of inertia about the x and y axis for the area shown in Figure Q3(b) . (10 marks)			
		(10 marks)			
Q4	(a)	Give definition and explanation on the relationship of gravitational potential ene (GPE) and kinetic energy (KE).			
	(b)	Muhammad travels using a 1060 kg sport car from Johor Baharu to Kuala Lumpur a 3 m/s, it begin to accelerate at a m/s ² , where $v = \sqrt[4]{(80/a)}$ m/s. At 5 second after the acceleration;			
		(i) Calculate the acceleration, a and position of the sport car after 5 second. (13 marks			
		(ii) If the drag resistance on the car due to the wind is FD = (10v) N, where v is the velocity, determine the power supply to the engine at this instant. The engine has a running efficiency of $\varepsilon = 0.68$.			

- END OF QUESTIONS -

CONFIDENTIAL

TERBUKA

SEMESTER/SESSION : SEM I / 2019/2020

COURSE NAME : STATIC AND DYNAMIC

PROGRAMME CODE: 1 BFF

COURSE CODE : BFC10103



FIGURE Q1(i)

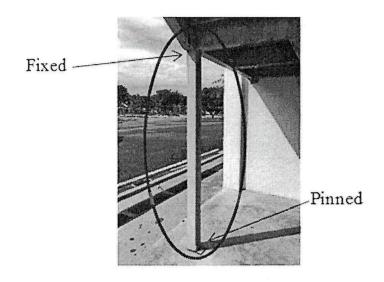


FIGURE Q2(i)

SEMESTER/SESSION : SEM I / 2019/2020

COURSE NAME : STATIC AND DYNAMIC

PROGRAMME CODE: 1 BFF

COURSE CODE : BFC10103

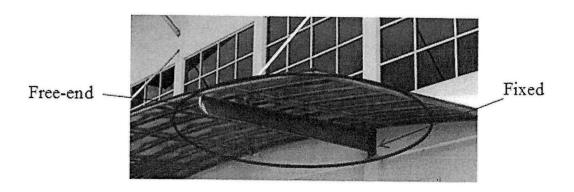
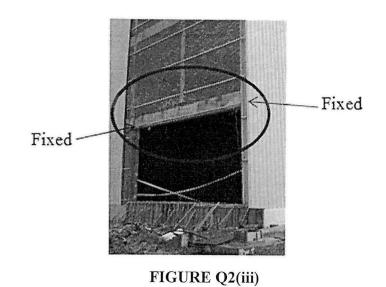



FIGURE Q2(ii)

SEMESTER/SESSION : SEM I / 2019/2020

COURSE NAME

: STATIC AND DYNAMIC

PROGRAMME CODE: 1 BFF

COURSE CODE : BFC10103

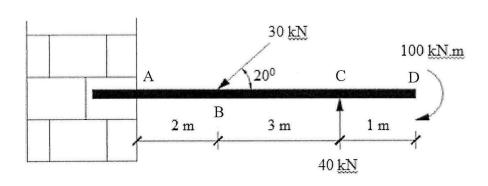


FIGURE Q2(iv)

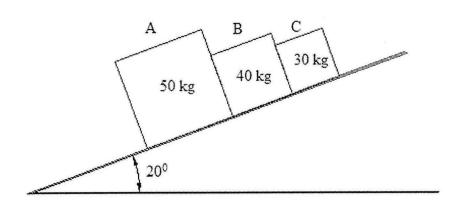


FIGURE Q2(v)

SEMESTER/SESSION : SEM I / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME

: STATIC AND DYNAMIC

COURSE CODE : BFC10103

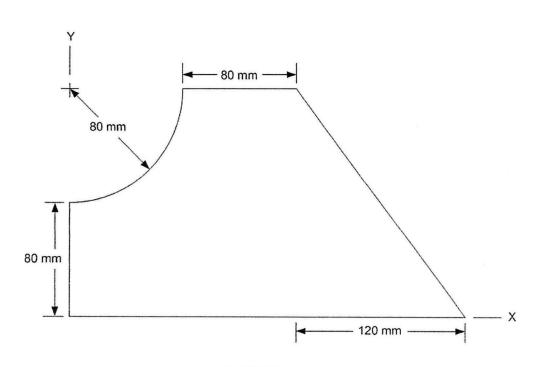


FIGURE Q3(b)

CONFIDENTIAL

SEMESTER/SESSION : SEM I / 2019/2020

COURSE NAME : STATIC AND DYNAMIC

PROGRAMME CODE: 1 BFF

COURSE CODE : BFC10103

APPENDIX

Centroids of Areas 1.

entroids of Areas	Shape	\overline{x}	\bar{y}	A
Triangle	\overline{y} \uparrow $ \overline{x} $ b	<u>b</u> 3	<u>h</u> 3	$\frac{1}{2}bh$
Semicircle	r $\frac{y}{\bar{y}}$	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter circle	\overline{x}	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Rectangle	$ \begin{array}{c cccc} & y & & & & \\ & h & & & & \downarrow \\ & h & & & & \overline{y} \\ & b & & & \uparrow \\ \end{array} $	$\frac{b}{2}$	<u>h</u> 2	bh
Parabolic Spandrel	$\begin{array}{c c} y \\ \hline \\ h \\ \hline \\ b \\ \hline \\ \end{array} \begin{array}{c} \overline{y} \\ x \\ \hline \end{array}$	$\frac{3b}{4}$	$\frac{3h}{10}$	$\frac{bh}{3}$

CONFIDENTIAL

SEMESTER/SESSION : SEM I / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME : STATIC AND DYNAMIC

COURSE CODE : BFC10103

APPENDIX

2. Equation of Moment of Inertia

Equation of Moment	Shape	Equation
Triangle	\overline{y} \uparrow $ \overline{x} $ b	$I_x = \frac{bh^3}{36}, I_y = \frac{b^3h}{36}$
Semicircle	$\frac{y}{\bar{y}}$	$I_x = I_y = \frac{1}{8}\pi r^4$ $J = \frac{1}{4}\pi r^4$
Quarter circle	\overline{x}	$I_x = I_y = \frac{1}{16} \pi r^4$ $J = \frac{1}{8} \pi r^4$
Rectangle	$ \begin{array}{c cccc} & y & \overline{x} & \overline{\qquad} \\ & h & \overline{\qquad} & \overline{y} \\ & b & \uparrow & x \end{array} $	$I_x = \frac{bh^3}{12}, I_y = \frac{b^3h}{12}$ $J = \frac{1}{12}bh(b^2 + h^2)$

SEMESTER/SESSION : SEM I / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME

: STATIC AND DYNAMIC

COURSE CODE : BFC10103

APPENDIX

Rectilinear Motion with Uniform Acceleration 3.

$$a = \frac{dv}{dt}, \quad a = v \frac{dv}{ds}$$

$$s = v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at$$

$$v^2 = {v_0}^2 + 2as$$

where,

displacement

initial velocity

final velocity

constant acceleration

time

4. **Newton Law**

$$F = ma$$

where,

force

mass m

acceleration

5. **Engine Power**

$$P = Fv$$

where,

power

force

velocity