

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

CIVIL ENGINEERING

MATHEMATICS III

COURSE CODE

BFC 24103

PROGRAMME CODE

: BFF

EXAMINATION DATE : DECEMBER 2019/ JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

TERBUKA

Show that $\lim_{(x,y)\to(0,0)} \frac{x^3-xy^2}{x^2+y^2} = 0$ Q1

(5 marks)

- Given $w = x^2 2y^2 + z^3$, $x = \sin t$, $y = e^t$, and z = 3t. Find $\frac{dw}{dt}$ using chain rule. (b) (5 marks)
- Find $\int_0^4 \int_0^{\sqrt{y}} x e^{y^2} dx dy$ (c)

(5 marks)

(d) Find the directional derivative of the function $f(x, y, z) = xy \sin z$ at the point (1, 2, $\frac{\pi}{2}$ in the direction of the vector $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$.

(5 marks)

Determine the volume of solid cylinder $x^2 + z^2 = 9$ between the plane y = 2 and y = 2Q2(a)

(7 marks)

(b) A lamina has shape of the region in the first quadrant that is bounded by the graphs of $y = \sin x$, $y = \cos x$, between x = 0 and $x = \pi/4$. Determine the centre of mass if the density is y.

(7 marks)

Determine limit of vector function of the following: (c)

i.
$$\mathbf{r}(t) = \ell^t \mathbf{i} + \frac{\sin(t)}{t} \mathbf{j}$$

i.
$$\mathbf{r}(t) = \ell^t \mathbf{i} + \frac{\sin(t)}{t} \mathbf{j}$$

ii. $\mathbf{r}(t) = \sin^2(t) \mathbf{i} + \tan(t) \mathbf{j} + \frac{1}{t} \mathbf{k}$

iii.
$$\mathbf{r}(t) = \frac{2}{t}\mathbf{i} + \frac{t^3}{2t^3 - 8}\mathbf{j} + \ell^{-t}\mathbf{k}$$

(6 marks)

(d) Determine a unit vector in the direction in which $f(x, y) = \sqrt{x^2 + y^2}$ increases most rapidly at point P(5,-2).

(5 marks)

If the temperature at any point in a homogeneous body is given by $T = e^{xy}$ $xy^2 - x^2yz$, determine the direction of the greatest drop in temperature at the point (1, -1, 2).

(5 marks)

Q3 The elevation angle at of the top of a tower is found to be $30^{\circ} \pm 0.5^{\circ}$ from a point of (a) 300±0.1 m from the base. Calculate the height of this tower.

(8 marks)

(b) Sketch the region R enclosed between:

$$y = -x^{2} + 4$$

$$y = \frac{x}{2} + 1$$

$$y = -x + 3$$

$$x \ge 0$$

(8 marks)

Given the vector-valued function $\mathbf{r}(t) = 5\cos t\,\mathbf{i} + 5\sin t\,\mathbf{j}$. Calculate its unit tangent (c) vector and principal unit normal vector at $t = \pi/4$. Then, sketch the graph of $\mathbf{r}(t)$, $\mathbf{T}(\pi)$ and $N(\pi)$ in the same axis.

(10 marks)

By applying Green's theorem show that if a region S in the plane has boundary C, (d) where C is a piecewise smooth, simple closed curve, then the area of S is given by

$$A(S) = \oint_C (-y \, dx + x \, dy)$$

Use result from above to calculate the area enclosed by the ellipse $x^2/a^2 + y^2/b^2 =$ 1 under the given parametric equations

$$x = a \sin t$$
, $y = b \sin t$, $0 \le t \le 2\pi$ (14 marks)

Given $\iiint_E e^{-x^2-z^2} dV$ where E is the region between the two cylinders $x^2 + z^2 = 4$ and Q4 $x^2 + z^2 = 9$ with $1 \le y \le 5$ and $z \le 0$. Convert the given integral into cylindrical coordinates and analyse it.

(10 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2019/2020

PROGRAMME CODE: BFF

COURSE NAME: CIVIL ENGINEERING MATHEMATICS

COURSE CODE: BFC 24103

Formulae

Tangent Plane: $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Local Extreme Value: $G(x, y) = f_{xx}(x, y) \times f_{yy}(x, y) - [f_{yy}(x, y)]^2$

Case	G(a,b)	Result
1	G(a,b) > 0 $f_{xx}(a,b) < 0$	f(x, y) has a local maximum value at (a, b)
2	G(a,b) > 0 $f_{xx}(a,b) > 0$	f(x, y) has a local minimum value at (a, b)
3	G(a,b)<0	f(x,y)has a saddle point at (a,b)
4	G(a,b)=0	inconclusive

Polar coordinate: $x = r\cos\theta$, $y = r\sin\theta$, $\theta = \tan^{-1}(\frac{y}{x})$ and

 $\iint_{R} f(x,y)dA = \iint_{R} f(r,\theta)rdrd\theta$

Cylindrical

coordinate: $x = r\cos\theta$, , $y = r\sin\theta$, z = z, $\iiint_G f(x, y, z)dV =$

 $\iiint_G f(r,\theta,z)d\ dz\ dr\ d\theta$

Spherical coordinate: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \theta$, $x^2 + y^2 + z^2 = \rho^2$, $0 \ll \rho$ $\theta \ll 2\pi$, $0 \ll \phi \ll \pi$ and $\iiint f(x, y, z)dV = \iiint f(\rho, \phi, \theta)\rho^2 \sin \phi \, d\rho d\phi d\theta$

For lamina

Mass, $m = \iint_{\mathbb{R}} \delta(x, y) dA$

Moment of mass: y-axis: $M_y = \iint_R x \delta(x, y) dA$ x-axis, $M_x = \iint_R y \delta(x, y) dA$

Center of mass, $(\bar{x}, \bar{y}) = (\frac{M_y}{m}, \frac{M_x}{m})$

Centroid for homogenous lamina: $\bar{x} = \frac{1}{area} \iint_R x \, dA$ $\bar{y} = \frac{1}{area} \iint_R y \, dA$

Moment inertia:

Y-axis: $I_y = \iint_R x^2 \delta(x, y) dA$ x-axis: $I_x = \iint_R y^2 \delta(x, y) dA$

Z-axis (or origin): $I_z = I_0 = \iint_R (x^2 + y^2) \delta(x, y) dA = I_x + I_y$

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2019/2020

COURSE NAME: CIVIL ENGINEERING MATHEMATICS

PROGRAMME CODE: BFF **COURSE CODE: BFC 24103**

For solid

Mass, $m = \iiint_G \delta(x, y) dV$

Moment of mass:

yz-plane: $M_{yz} = \iiint_G x \, \delta(x, y, z) \, dV$

xz-plane: $M_{xz} = \iiint_G y \, \delta(x, y, z) \, dV$

xy-plane: $M_{xy} = \iiint_G z \, \delta(x, y, z) \, dV$

Center of gravity, $(\bar{x}, \bar{y}, \bar{z}) = (\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m})$

Moment inertia:

$$I_y = \iiint_G (x^2 + z^2) \, \delta(x, y, z) \, dV$$

$$I_x = \iiint_C (y^2 + z^2) \, \delta(x, y, z) \, dV$$

$$I_z = \iiint_G (x^2 + y^2) \, \delta(x, y, z) \, dV$$

Directional derivative: $D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot u$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is vector field, then the divergence of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$ The curl of

$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

Let C is a smooth curve given by r(t) = x(t)i + y(t)j + z(t)k, t is parameter, then

The unit tangent vector; $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$

The unit normal vector: $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$

The binormal vector: $B(t) = T(t) \times N(t)$

The curvature: $K = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}' \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$

The radius of curvature: $\rho = 1/K$

Green Theorem: $\oint_C M(x,y) dx + N(x,y) dy = \iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} dA$

Gauss Theorem: $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{\sigma} \nabla \cdot \mathbf{F} \ dV$

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2019/2020

COURSE NAME: CIVIL ENGINEERING MATHEMATICS

PROGRAMME CODE: BFF COURSE CODE: BFC 24103

Stokes Theorem: $\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_{\sigma} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$

Arc length, If $r(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $t \in [a, b]$, then the arc length

$$s = \int_{a}^{b} \|\mathbf{r}'(t)\| dt = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

If
$$r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
, $t \in [a, b]$, then the arc length
$$s = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$