

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

CIVIL ENGINEERING

MATHEMATICS III

COURSE CODE

: BFC 24103

PROGRAMME CODE

BFF

:

EXAMINATION DATE

DECEMBER 2018 / JANUARY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS IN

SECTION A AND THREE (3)
QUESTIONS IN SECTION B.

TERBUKA

THIS EXAMINATION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

CONFIDENTIAL

BFC 24103

SECTION A

Q1 (a) The position acceleration of particle is given as

$$a(t) = 2i + 6t j + 12t^2 k$$

and initial velocity is $\mathbf{v}(0) = \mathbf{i}$ and position is $\mathbf{r}(0) = \mathbf{j} - \mathbf{k}$. Calculate the velocity and position vector of particle when t = 2.

(10 marks)

(b) Find the unit tangent and normal vector of the vector function

$$\mathbf{r}(t) = \langle t^2, \sin t - t \cos t, \cos t + t \sin t \rangle \qquad , t > 0$$
(10 marks)

Q2 (a) Verify Green's theorem for;

$$\oint_c (2x - y) dx + xy \, dy$$

where C is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.

(10 marks)

(b) Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ by using Stokes' theorem for the vector $\mathbf{F} = xz \mathbf{i} + xy \mathbf{j} + 3yz \mathbf{k}$ and the curve C which is the perimeter of a closed triangle in the first octant with vertices at (3, 0, 0), (0, 3, 0), and (0, 0, 6) in the counterclockwise direction, when view from the positive z-axis.

(10 marks)

SECTION B

Q3 (a) Determine whether the function f(x, y) exist and continuous at the point (4, 0).

$$f(x,y) = \begin{cases} \frac{xy - 4y}{\sqrt{x} - 2}, & if (x,y) \neq (4,0) \\ 0, & if (x,y) = (4,0) \end{cases}$$
 (4 marks)

(b) Find f_x and f_y for $ye^{2xz} - 5ye^{yz} = -10ze^{2xy} + 1$, if z = f(x, y) is implicitly defined as a function of x and y.

(10 marks)

(c) Use the differential dz to approximate the change in $z = \sqrt{25 - x^2 - y^2}$ as (x, y) move from the point (2, 2) to the point (1.95, 2.05). Compare this approximation change with the exact change in z.

(6 marks)

- Q4 (a) Given that $f(x,y) = 2x^2 + xy y^2$. Find the partial derivatives f_x and f_y . (4 marks)
 - (b) A hot air balloon is rising straight up from a field and tracked by a range finder 150 m from the lift-off point as shown in **Figure Q4(b)**. The range finder angle is $\pi/4$, the angle is increasing at the rate of 0.14 rad/min. Predict how fast the balloon is rising at that moment.

(7 marks)

(c) The radius of a right circular cylinder is measured with an error of at most 4%, and the height is measured with and error of at most 8%. Approximate the maximum possible percentage error in the volume V calculated from these measurements.

(9 marks)

Q5 (a) Evaluate the triple integral

$$\int_0^1 \int_0^{x^2} \int_0^{x+y} (x - 2y + z) \ dx dy dz$$

(6 marks)

(b) Consider an object which is bounded above by the inverted paraboloid $z = 16 - x^2 - y^2$ and below by the *xy*-plane. Suppose that the density of the object is given by $\delta(x, y, z) = 8 + x + y$. Analyse the mass of the object by using cylindrical coordinates.

(7 marks)

(c) Find the area bounded by $y = 2x^2$ and $y = 1 + x^2$ using double integral.

(7 marks)

CONFIDENTIAL

BFC 24103

- Q6 (a) Given that a lamina with density function $\delta(x,y) = y$ is bounded by $y = \sin x$, y = 0, x = 0 and $x = \pi$. Estimate the centre of mass of the lamina. (6 marks)
 - (b) Analyze the volume of the solid within the cylinder $x^2 + y^2 = 4$ and between the planes z = 2 and y + z = 5 using cylindrical coordinates. (7 marks)
 - (c) Calculate the volume of the solid bounded above by $\rho = 5$ and below by cone $\phi = \frac{\pi}{4}$ using spherical coordinates (7 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION: SEM I/ 2018/2019

PROGRAMME :BFF

COURSE: CIVIL ENGINEERING MATHEMATICS III CODE

:BFC 24103

FIGURE Q4(b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I/ 2018/2019

PROGRAMME :BFF

COURSE: CIVIL ENGINEERING MATHEMATICS III

CODE

:BFC 24103

Formulae

Implicit Partial Differentiation:

$$\frac{\partial z}{\partial x} = -\frac{f_x(x, y, z)}{f_z(x, y, z)} \text{ or } \frac{\partial z}{\partial y} = -\frac{f_y(x, y, z)}{f_z(x, y, z)}$$

Small Increment, Estimating Value:

Total differential/approximate change, $\partial z = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

Exact change, $dz = f(x_1, y_1) - f(x_0, y_0)$

Approximate value, $z = f(x_0, y_0) + dz$

Exact value, $z = f(x_1, y_1)$

Error: $|dz| = \left| \frac{\partial z}{\partial x} dx \right| + \left| \frac{\partial z}{\partial y} dy \right|$ and Relative error: $\left| \frac{dz}{z} \right| = \left| \frac{\partial z}{\partial x} \frac{dx}{z} \right| + \left| \frac{\partial z}{\partial y} \frac{dy}{z} \right|$

Polar coordinate: $x = r \cos \theta$, $y = r \sin \theta$, $x^2 + y^2 = r^2$, and $\iint_R f(x,y) dA = \iint_R f(r,\theta) r dr d\theta$

Cylindrical coordinate: $x = r \cos \theta$, $y = r \sin \theta$, z = z, $\iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r dz dr d\theta$

Spherical coordinate: $x = \rho \cos \theta \sin \emptyset$, $y = \rho \sin \theta \sin \emptyset$, $z = \rho \cos \emptyset$, $x^2 + y^2 + z^2 = \rho^2$,

 $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$ and $\iiint_G f(x, y, z) dV = \iiint_G f(\rho, \phi, \theta) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$

Directional derivative: $D_{\mathbf{u}} f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$

Let $\mathbf{F}(x, y, z) = M \mathbf{i} + N \mathbf{j} + P \mathbf{k}$ is vector field, then

the divergence of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

the **curl** of $\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$

Let C is a smooth curve given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, t is parameter, then

the unit tangent vector:

 $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$

the unit normal vector:

 $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$

the binormal vector:

 $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

the curvature:

 $\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$

the radius of curvature:

 $\rho = 1/\kappa$

FINAL EXAMINATION

SEMESTER / SESSION : SEM I/ 2018/2019

PROGRAMME :BFF

COURSE: CIVIL ENGINEERING MATHEMATICS III

CODE

:BFC 24103

Green Theorem: $\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$

Gauss Theorem: $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{G} \nabla \cdot \mathbf{F} \, dV$

Stokes' Theorem: $\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$

Arc length

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $t \in [a,b]$, then the **arc length** $s = \int_{a}^{b} \|\mathbf{r}'(t)\| dt = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $t \in [a,b]$, then the **arc length** $s = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$

Tangent Plane

$$z-z_0 = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0)$$

Extreme of two variable functions

$$G(x, y) = f_{xx}(x, y) f_{yy}(x, y) - (f_{xy}(x, y))^2$$

Case 1: If G(a,b) > 0 and $f_{xx}(x,y) < 0$ then f has local maximum at (a,b)

Case 2: If G(a,b) > 0 and $f_{xx}(x,y) > 0$ then f has local minimum at (a,b)

Case 3: If G(a,b) < 0 then f has a saddle point at (a,b)

Case 4: If G(a,b) = 0 then no conclusion can be made.

In 2-D: Lamina

Mass: $m = \iint_R \delta(x, y) dA$, where $\delta(x, y)$ is a density of lamina.

Moment of mass: (i) about y-axis, $M_y = \iint_R x \delta(x, y) dA$, (ii) about x-axis, $M_x = \iint_R y \delta(x, y) dA$

Centre of mass, $(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$

Moment inertia: (i) $I_y = \iint_R x^2 \delta(x, y) dA$, (ii) $I_x = \iint_R y^2 \delta(x, y) dA$, (iii) $I_o = \iint_R (x^2 + y^2) \delta(x, y) dA$

In 3-D: Solid

Mass, $m = \iiint_G \delta(x, y, z) dV$. If $\delta(x, y, z) = c$, c is a constant, then $m = \iiint_G dA$ is volume.

Moment of mass

- (i) about yz-plane, $M_{yz} = \iiint_C x \delta(x, y, z) dV$
- (ii) about xz-plane, $M_{xz} = \iiint_G y \delta(x, y, z) dV$
- (iii) about xy-pane, $M_{xy} = \iiint z \delta(x, y, z) dV$

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION: SEM I/ 2018/2019

PROGRAMME :BFF

COURSE: CIVIL ENGINEERING MATHEMATICS III

CODE :BFC 24103

Centre of gravity, $(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$

Moment inertia

(i) about x-axis:
$$I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV$$

(ii) about y-axis:
$$I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$$

(iii) about z-axis:
$$I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$$

