

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2018/2019

COURSE NAME

STATIC AND DYNAMIC

COURSE CODE

BFC10103

PROGRAMME CODE :

BFF

EXAMINATION DATE :

JUNE / JULY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS IN

PART A AND THREE (3)

QUESTIONS IN PART B.

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

BFC10103

PART A

Q1 (a) Briefly explain THREE (3) types of motion in kinematic.

(6 marks)

- (b) **Figure Q1** shows a man with 75 kg of mass inside an elevator. He decides to move from ground level to fifth floor which is 24 m at height. The elevator is capable to accelerate up to 0.2m/s^2 and decelerate to 0.1m/s^2 at maximum speed of 5 m/s.
 - (i) Calculate the displacement and maximum velocity at the fifth floor.

(8 marks)

(ii) Determine the fastest time to arrive at the fifth floor.

(4 marks)

(iii) If the elevator is able to decelerate up to 3 m/s² from rest, calculate the work done based on his weight and the work of the normal force exert on him when the elevator descends 5 m.

(7 marks)

PART B

$\mathbf{Q2}$	(a)	Explai	in the principle	of Newt	on Laws.				
					(5 marks)				
	(b)	Convert all units below.							
		(i)	158 kN/mm ²	=	MPa				
		(ii)	130 kg/m^3	=	g/cm ³				
		(iii)	55 lb/in	=	N/mm				
		(iv)	600 ft/s^2	= ,	m/s ²				
		(v)	73 N/mm ²	=	$_{\rm mass}$ kN/m ²				
					(5 marks)				
	(c)	By ref	ferring to Figu	re O2 . de	etermine the magnitude of force, F, and its direction, θ_f ,				
	(0)		resultant force,		N.				
					(15 marks)				
Q3	(a)	Give the definition of couple action in civil engineering and explain the effect of							
		couple action.							
					(5 marks)				
	(b)	Determine the magnitude and the resultant of couple moments acting on the rectangular plate as shown in Figure Q3. (20 marks)							
Q4	(a)	Explain the definition of friction?							
					(2 marks)				
	(b	A 400 gram package lying on a horizontal surface is attached to a horizontal string which passes over a smooth pulley as shown in Figure Q4(a) . When a mass of 200 gram is attached to the other end of the string, the package is on the point of moving.							
		(i)	Draw a free b	ody diag	ram to show the forces acting on the box. (3 marks)				
		(ii)	Determine th	e coeffici	ent of friction, μ.				
					(7 marks)				

CONFIDENTIAL

Q5

(d)

BFC10103

(c)	A 100 lb force is pulling a 200 lb block as shown in Figure Q4(b) . The coefficient of static friction between the block and the floor is $\mu_s = 0.6$ and the coefficient of kinetic is $\mu_k = 0.4$.					
	(i)	Calculate the friction force between block and floor.				
			(9 marks)			
	(ii)	Identify whether the block will move or not.				
			(4 marks)			
Figure	e Q5 she	ows the cross section of a culvert with the hole diameter of 10 m.				
(a)	Detern	nine the height, H, of the culvert.	(2 marks)			
(b)	Detern	nine the centroid of the culvert.	(9 marks)			
(c)	Find th	ne location of the centroid.	(2 marks)			

- END OF QUESTIONS -

Calculate the moment of inertia of the culvert.

(12 marks)

SEMESTER/SESSION : SEM II / 2018/2019

COURSE NAME

: STATIK DAN DINAMIK

PROGRAMME CODE: 1 BFF

COURSE CODE : BFC10103

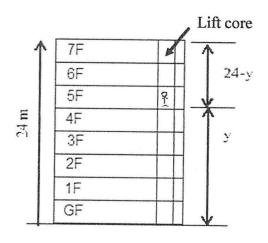
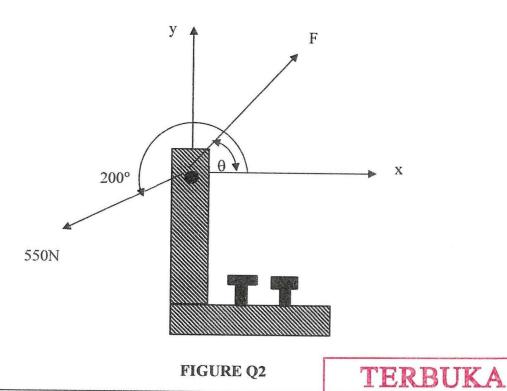



FIGURE Q1

SEMESTER/SESSION : SEM II / 2018/2019

PROGRAMME CODE: 1 BFF

COURSE NAME

: STATIC AND DYNAMIC

COURSE CODE : BFC10103

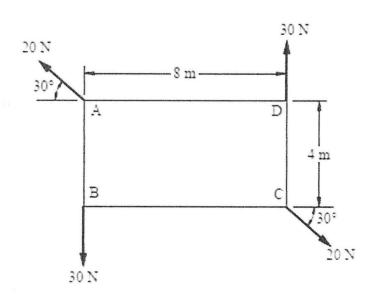


FIGURE Q3

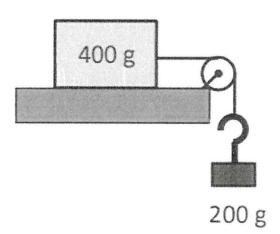


FIGURE Q4(a)

SEMESTER/SESSION : SEM II / 2018/2019

COURSE NAME

: STATIC AND DYNAMIC

PROGRAMME CODE: 1 BFF

COURSE CODE

: BFC10103

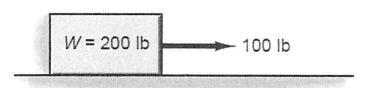


FIGURE Q4(b)

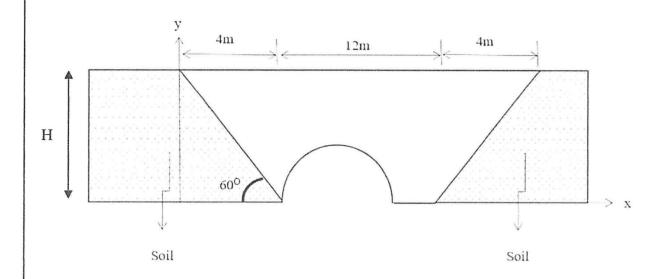


FIGURE Q5

TERBUKA

SEMESTER/SESSION : SEM II / 2018/2019

PROGRAMME CODE: 1 BFF

COURSE NAME : STATIC AND DYNAMIC

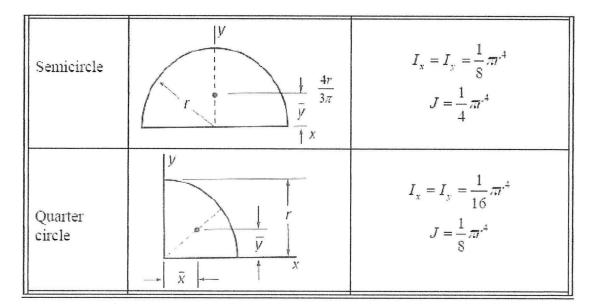
COURSE CODE : BFC10103

Centroid

	Shape	\overline{X}	\overline{y}	Α
Triangle		<u>b</u> 3	<u>h</u> 3	$\frac{1}{2}bh$
Semicircle		0	$\frac{4r}{3\pi}$	<u>π·²</u> 2
Quarter circle	\overline{x}	$\frac{4r}{3\pi}$	<u>4r</u> 3π	<u>₹</u> 70.2

TERBUKA

SEMESTER/SESSION : SEM II / 2018/2019


COURSE NAME

: STATIC AND DYNAMIC

PROGRAMME CODE: 1 BFF

COURSE CODE : BFC10103

Moment of Inertia

List of Equation

$$s = v_0 + \frac{1}{2}at^2$$

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2as$$

$$F = ma$$

$$U = F. s$$