

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

CIVIL ENGINEERING MATHEMATIC II

TERBUKA

COURSE CODE : BFC14003 / BWM10203

PROGRAMME CODE : BFF

COURSE NAME

EXAMINATION DATE : DECEMBER 2016 / JANUARY 2017

DURATION : 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS IN SECTION A, AND ANY TWO (2) OUESTIONS IN SECTION B.

DR, NØR AMANI FILZAH BIT MOND KAMIL Jal atan Kejuruteraan Air dan Alam Sekitar Faxulli Kejuruteraan Awam dan Alam Sekitar Universib Tun Hussem Con Majaysia

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

BFC 14003 / BWM 10203

SECTION A

- By using formula $\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$, find the laplace transform of f(t) = tQ1 (a) (5 marks)
 - By using linear property of inverse laplace transform, find the inverse of (b)

$$\frac{4s+7}{s^2+9} \tag{5 marks}$$

By using laplace transform method, solve the initial value problem (c)

$$y'' - 10y' + 9y = 5t; y(0) = 1; y'(0) = 2$$
 (10 marks)

Use one of the Maclaurin Series derived to determine the Maclaurin Series for Q2(a)

$$f(x) = \sin 4x$$
(5 marks)

By using differentiation of power series, find
$$\frac{d}{dx}(\sin 4x)$$
(3 marks)

(b)

$$\frac{d}{dx}(\sin 4x)$$

(3 marks)

Determine whether the following series converges or diverges. If converges, find the (c)

$$i) \qquad \sum_{k=1}^{\infty} \frac{1}{3^k + 1}$$

ii)
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{2} + \frac{1}{\sqrt{5}}$$

$$iii) \qquad \sum_{n=1}^{\infty} \frac{(-1)^n n}{5n+6}$$

iv)
$$\sum_{n=1}^{\infty} 9^{-n+2} 4^{n+1}$$

OR, MOS AMANI FILZAR BY MOHD KANS Jet ali n'Kejuruteraan Air dan Alam Sekitar Fee of Kejuruteraan Awari can Alam Sekitar Universiti Tun Mussein Con Malaysia trump punt Reis, Balu Panat, Juhor (12 marks) Q3 A periodic function f(x) is defined by

$$f(x) = \begin{cases} -2, & -\pi < x < -\frac{\pi}{2} \\ x, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 2, & \frac{\pi}{2} < x < \pi \end{cases}$$
$$f(x) = f(x + 2\pi)$$

which it can be written as a Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

(a) Sketch the graph of f(x) over $-2\pi \le x \le 2\pi$.

(3 marks)

(b) Determine whether the function is even, odd or neither.

(1 mark)

- (c) For n = 1, 2, 3, ..., show that
 - (i) $a_0 = 0$.
 - (ii) $a_n = 0$.

(7 marks)

(d) Calculate the Fourier coefficient, b_n .

(5 marks)

(e) Find the Fourier series.

(4 marks)

SECTION B

Q4 (a) Form an ordinary differential equation by eliminating the constants A and B from the equation:

 $y = Ax^3 + \frac{B}{x^2} - 6x$ (5 marks)

- (b) Given $x^2y'' + xy' + (x^2 \frac{1}{4})y = 0$. Show that $y = x^{-\frac{1}{2}}$ is a solution. (5 marks)
- (c) In a murder investigation, a dead body was found by a detective at exactly 8 am. Being alert, the detective also measured the body temperature and found it to be 20°C. Two hours later, the detective measured the body temperature again and found it to be 15°C. If the room temperature is 27°C, and assuming that the body temperature of the person before death was 37°C, determine the time the body reach 18°C?

(10 marks)

Q5 (a) By using substitution z = xy, solve $xy' + y = 2x\sqrt{1 - (xy)^2}$ by using separable method.

(10 marks)

(b) A population of worms in a region will grow at a rate that is proportional to the current population. In the absence of any outside factors, the population will double in two weeks time. On any given day, there is a net migration into the area of 5 worms and 6 are eaten by the birds and 4 die of natural causes. If there are initially 50 insects in the area, determine the population after four weeks?

(10 marks)

- Q6 (a) Interpret $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 3y = \sin 2x$ by using the method of undetermined coefficient. (10 marks)
 - (b) A 3 kg of iron ball is attached to spring and will stretch the spring 392 mm by itself. There is no damping in the system and a forcing function of the form $F(t) = 10\cos(\omega t)$ is attached to the ball and the system will experience resonance. If the ball is initially displaced 20 cm downward from its equilibrium position and given a velocity of 10 cm/s upward, find the displacement at any time t.

(10 marks)

- END OF QUESTIONS-

ER, MOR AMANI KILZAM BT MC NL. Mauki Jabatan Kejuruteraan Air dan Alam Sakitar Pakutif Kejuruterian Awam can Alam Sekitar Johyersifi Tun Hussein Onn Malaysia Earn Pont Raja, Batu Pahat, Johan

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2016/2017

COURSE NAME: CIVIL ENGINEERING MATHEMATICS II

PROGRAMME CODE: BFF

COURSE CODE: BFC 14003 / BWM 10203

Formulae

Characteristic Equation and General Solution

Case	Roots of the Characteristic Equation	General Solution
1	m_1 and m_2 ; real and distinct	$y = Ae^{m_1x} + Be^{m_2x}$
2	$m_1 = m_2 = m$; real and equal	$y = (A + Bx)e^{mx}$
3	$m = \alpha \pm i\beta$; imaginary	$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$

Particular Integral of ay'' + by' + cy = f(x): Method of Undetermined Coefficients

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + \dots + A_1 x + A_0$	$x^r(B_nx^n+\cdots+B_1x+B_0)$
$Ce^{\alpha x}$	$x^r(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x''(p\cos\betax + q\sin\betax)$

Particular Integral of ay'' + by' + cy = f(x): Method of Variation of Parameters

Wronskian	Parameter	Solution
$W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix}$	$u_1 = -\int \frac{y_2 f(x)}{W} dx, u_2 = \int \frac{y_1 f(x)}{W} dx$	$y_{p} = u_{1}y_{1} + u_{2}y_{2}$

TERBUKA

Fourier Series

Fourier series expansion of periodic function with	
period $2L$	
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$	

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

of periodic function with | Fourier half-range series expansion

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

where

$$a_0 = \frac{2}{L} \int_0^L f(x) \, dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{2} dx$$

$$\frac{1}{16\pi k_0^2 m_c} \int_0^L f(x) \cos \frac{n\pi x}{2} dx$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n \pi x}{L} \int_0^L f(x) \sin \frac{n \pi x}{L} \int_0^L f(x) dx$$

CONFIDENTIAL

BFC 14003 / BWM 10203

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2016/2017 COURSE NAME: CIVIL ENGINEERING MATHEMATICS II

PROGRAMME CODE: BFF

COURSE CODE: BFC 14003 / BWM 10203

Laplace Transforms

$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$			
f(t)	F(s)	f(t)	F(s)
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	f(t-a)H(t-a)	$e^{-as}F(s)$
e ^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}
sin at	$\frac{a}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$
cos at	$\frac{s}{s^2 + a^2}$	$\int_0^t f(u)g(t-u)du$	F(s).G(s)
sinh at	$\frac{a}{s^2 - a^2}$	y(t)	Y(s)
cosh at	$\frac{s}{s^2 - a^2}$	$\dot{y}(t)$	sY(s) - y(0)
$e^{at}f(t)$	F(s-a)	$\ddot{y}(t)$	$s^2Y(s) - sy(0) - \dot{y}(0)$
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$		

Periodic Function for Laplace transform : $\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$, s > 0.

IR, NOR AMANI FILZAH DT MOHD KAMIL r auch Kilgurbergen Africhen Alam Sekitar Kunffleifuntergan Awam, Jan Alam Sekitar Jaivershi Ten Hussein Ohn Mataysia Gebet Fortelliga, Betu Fuhat, Johan

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2016/2017 COURSE NAME: CIVIL ENGINEERING MATHEMATICS II

PROGRAMME CODE: BFF

COURSE CODE: BFC 14003 / BWM 10203

Trigonometric and Hyperbolic Identities

Trigonometric	Hiperbolic
$\cos^2 x + \sin^2 x = 1$	$\sinh x = \frac{e^x - e^{-x}}{2}$
$1 + \tan^2 x = \sec^2 x$	$ \cosh x = \frac{e^x + e^{-x}}{2} $
$\cot^2 x + 1 = \csc^2 x$	$\cosh^2 x - \sinh^2 x = 1$
$\sin 2x = 2\sin x \cos x$	$1 - \tanh^2 x = \operatorname{sech}^2 x$
$\cos 2x = \cos^2 x - \sin^2 x$	$\coth^2 x - 1 = \operatorname{cosech}^2 x$
$\cos 2x = 2\cos^2 x - 1$	$\sinh 2x = 2\sinh x \cosh x$
$\cos 2x = 1 - 2\sin^2 x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	$\cosh 2x = 2\cosh^2 x - 1$
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\cosh 2x = 1 + 2\sinh^2 x$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$
$2\sin x \cos y = \sin(x+y) + \sin(x-y)$	$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$
$2\sin x \sin y = -\cos(x+y) + \cos(x-y)$	$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
$2\cos x\cos y = \cos(x+y) + \cos(x-y)$	Jar de Kejunteraan Air dan Alam Sekitar Pakuli Kejunteraan Air dan Alam Sekitar Univerdi Don Hussen Onn Malaysia Gebe
	volume version version and version ver

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2016/2017

PROGRAMME CODE: BFF

COURSE NAME: CIVIL ENGINEERING MATHEMATICS II COURSE CODE: BFC 14003 / BWM 10203

Differentiation and Integration

Differentiation Rules	Indefinite Integrals
$\frac{d}{dx}[k] = 0, \qquad k \text{ constant}$	$\int k dx = kx + C$
$\frac{d}{dx}\left[x^{n}\right] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{dx} \left[\ln x \right] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$\frac{d}{dx}\left[e^{x}\right] = e^{x}$	$\int e^x dx = e^x + C$
$\frac{d}{dx}[\cosh x] = \sinh x$	$\int \sinh x dx = \cosh x + C$
$\frac{d}{dx}[\sinh x] = \cosh x$	$\int \cosh x dx = \sinh x + C$
$\frac{d}{dx}[\tanh x] = \operatorname{sech}^2 x$	$\int \operatorname{sech}^2 x dx = \tanh x + C$
$\frac{d}{dx}[\coth x] = -\operatorname{cosech}^2 x$	$\int \operatorname{cosech}^2 x dx = -\operatorname{coth} x + C$
$\frac{d}{dx}[\operatorname{sech} x] = -\operatorname{sech} x \tanh x$	$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + C$
$\frac{d}{dx}[\operatorname{cosech} x] = -\operatorname{cosech} x \operatorname{coth} x$	$\int \operatorname{cosech} x \operatorname{coth} x dx = -\operatorname{cosech} x + C$

