

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER 1 SESSION 2014/2015

COURSE NAME

: HIGHWAY ENGINEERING

COURSE CODE

: BFC 31802

PROGRAMME : 3 BFF

EXAMINATION DATE : DECEMBER 2014/JANUARY 2015

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FOUR (4) QUESTIONS

THIS EXAMINATION PAPER CONSISTS OF SIXTEEN (16) PAGES

- Q1 (a) There are several types of bitumen in asphaltic concrete production for pavement.
 - (i) What is the difference between the production of cutback and emulsified bitumen?

(3 marks)

(ii) What is the suitable type of cutback bitumen to be used as a prime coat and tack coat in the road construction and give the justification for each answer.

(4 marks)

(iii) The road-base layer which consists of limestone aggregate has been completely constructed. What type of emulsified bitumen is suitable for application as prime coat for this layer and give the reason for your answer.

(2 marks)

(b) Briefly describe **THREE** (3) physical properties which are commonly used to characterize the strength of a subgrade.

(6 marks)

- (c) Selection of suitable soils to be used as subgrade for pavement is primary importance in the design and construction of highway.
 - (i) List **FOUR** (4) characteristics of soils those considered as <u>unsuitable</u> material for subgrade and for each mentioned characteristic explain why the soils shall not be used as subgrade material.

(4 marks)

(ii) If the subgrade materials in <u>cut area</u> are found to have California Bearing Ratio (CBR) values of less than that required by JKR specification, what shall be done to the top 300 mm of the subgrade.

(3 marks)

(iii) List **THREE** (3) types of test related to subgrade soil and mention their purposes.

(3 marks)

Q2 (a) List and explain FIVE (5) disadvantages of concrete pavement.

(5 marks)

(b) A plain concrete rigid pavement, doweled joint and concrete shoulders is designed for a two-lane two-direction road. Average daily truck traffic is 2500.

Given:

Using nomograph and tables (PCA method), complete the calculation form as shown in **Table 1** and determine:

- (i) Percentage of fatigue.
- (ii) Percentage of damage cause by erosion.
- (iii) Compare the percentage of fatigue and erosion, give your comment and justification.

(20 marks)

- Q3 (a) Explain the following terms that are commonly used in stopping sight distance.
 - (i) Perception Time
 - (ii) Reaction Time

(3 marks)

(b) A horizontal curve is to be designed for a section of a highway in rural area which has a design speed of 60 km/h. Calculate the value of superelevation required at this curve if the physical conditions restrict the radius of the curve to 150 m.

(4 marks)

(c) Sign placement involves many issues including the human eye's visual field. Consider the placement of a sign indicating: "TOLL PLAZA AHEAD – BE PREPARED TO STOP." Analyze how far in advance of the toll plaza should such sign be placed to inform the motorists. Given that it can be seen from a distance of 100 m, and that queued vehicles from the toll plaza rarely extend more than 50 m from the gates. Approach speed is 60 km/h, the coefficient of friction is 0.33 and perception-reaction time is 2.5 sec.

(6 marks)

- (d) From 2008 to the end of 2011, about fourteen road projects were constructed and widened in Johor especially in areas of Iskandar Malaysia. The vertical curve on that road is a sag vertical curve as shown in **Figure Q3** where the departure grade is -1.75% and the approach grade is +2.25%. Length of the curve is 1200 m and the elevation of vertical intersection point is 591 m.
 - (i) Design the vertical curve for each 100 m interval
 - (ii) Calculate the elevations of the minimum point.

(12 marks)

BFC 31802

Q4 (a) State TWO (2) main objectives of site investigation in the preliminary works of road construction process.

(2 marks)

(b) The following project data for the newly constructed road is listed as follows:

Length of proposed road = 10 kmCross-sectional area of embankment $= 36 \text{ m}^2$ Average distance of borrow area from embankment = 10 km

Results from the laboratory testing for the soil from the borrow pit to construct the embankment are listed as follows:

Maximum Dry Density (MDD) = 1.95 Mg/m^3 Optimum Moisture Content (OMC) = 8 %Bulk density, $γ_b$ = 1.75 Mg/m^3 Actual moisture content, m = 6 %

The bulk density and moisture content of borrow material is 1.75 Mg/m³ and 6 % respectively. According to the specification, the embankment should be compacted at least to 95 % of the MDD. With the bulking factor of 1.30, determine:

(i) Volume of borrow material required for 1 cubic meter of compacted road embankment.

(4 marks)

- (ii) Volume of additional water required for the entire volume of embankment.

 (4 marks)
- (iii) The number of truckloads of soil required if hauling capacity per truck is 8 m³.

 (4 marks)
- (iv) Construction cost of embankment with the following costs:

 Purchase and borrow pit material at site, haul 2 km round trip, and spread with bulldozer = RM 70/m³

Extra haul for each km round trip = RM $10/\text{m}^3$ Compaction = RM $10/\text{m}^3$

(4 marks)

- (c) Quality has become one of the most important factors in the selecting products and provides services. For road construction, the quality of the work has been control by implementing the quality assurance.
 - (i) List any FOUR (4) activities which involve in the quality assurance in road construction.

(4 marks)

(ii) According to American Association Society Highway Transportation Officials (AASHTO), there are **THREE** (3) key components which designated to define quality assurance. State the **THREE** (3) key components.

(3 marks)

Q5 (a) What are the basic purposes of Pavement Management System? (2 marks)

- (b) Surface deformation is one category of pavement distress. Briefly explain the following surface deformation types:
 - (i) Rutting
 - (ii) Depression
 - (iii) Corrugation
 - (iv) Shoving

(8 marks)

(c) Discuss in detail **ONE** (1) of Non-destructive Deflection Testing (NDT) method for pavement structural evaluation.

(5 marks)

(d) After conducting a pavement condition survey in Jalan Parit Botak (J9), it can be concluded that the average PCI value was 50 and considered as fair, mainly due to the surface defects. As an engineer, propose **TWO** (2) techniques of rehabilitation methods to treat the road. Give your justification for each technique chosen.

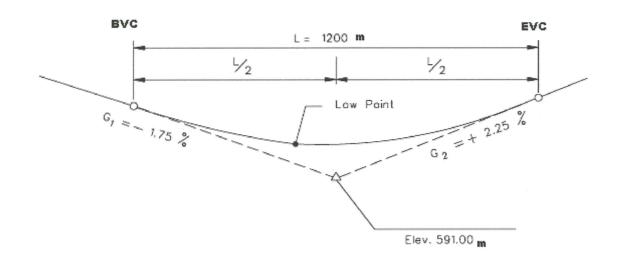
(10 marks)

- END OF QUESTION -

Matric Card No.	HWAY ENGINEER able 1: Calculati Expected	on of Paveme	nt Thickness Doweled joints in the shoulder i	:	302
Trial Thickness : Modulus of Rupture, MR : Load Safety factor, LSF : Axle load Multiplied by (kN) LSF	T	I Co	Doweled joints:	:	
Trial Thickness : Modulus of Rupture, MR : Load Safety factor, LSF : Axle load Multiplied by (kN) LSF	T	I Co	Doweled joints:	:	
Trial Thickness : Modulus of Rupture, MR : Load Safety factor, LSF : Axle load Multiplied by (kN) LSF	T	I Co	Doweled joints:	:	
Modulus of Rupture, MR: Load Safety factor, LSF: Axle load (kN) Multiplied by LSF	Evnoatod	Co	Doweled joints :	:	
Load Safety factor, LSF : Axle load Multiplied by LSF	Evnoatad		nrete shoulder		
Axle load Multiplied by LSF	Evnantad				
(kN) LSF	Evported		Design period	:	years
(kN) LSF	HVMAAtad	Fatigue	analysis	Erosion	analysis
	repetitions	Allowable	Fatigue	Allowable	Damage,
1 2		repetitions	percent 5	repetitions 6	percent 7
	3	4	3	0	/
		valent stress:	10	. Erosion factor	:
Single Axle					
133					
125					
115					
107					
98					
		valent stress: s ratio factor:	13	3. Erosion factor	:
Tandem Axle	1			<u> </u>	
231					
213		-			
195					
178		-			
160		-			
		Total		Total	

SEMESTER/SESSION : I/ 2014/2015

PROGRAMME


: 3BFF

COURSE

HIGHWAY ENGINEERING

COURSE CODE

: BFC31802

FIGURE Q3

FORMULAE

$$SSD = 0.278tV + V^2/254f$$

$$R_{min} = \frac{V^2}{127(e_{max} + f_{max})}$$

$$x_{\text{min/max}} = \frac{G_1 L}{A}$$

$$Y_{\text{min/max}} = \frac{G_1 x_{\text{min/max}}}{100} - \frac{A}{200L} (x_{\text{min/max}})^2$$

SEMESTER/SESSION : I/2014/2015

PROGRAMME

: 3BFF

COURSE

HIGHWAY ENGINEERING

COURSE CODE

: BFC31802

 Table 2: Longitudinal Coefficient of Friction Proposed for Certain Design Speeds

Design										
speed, V	30	40	50	60	70	80	90	100	110	120
(km/hr)										
Coefficient of	0.40	0.38	0.35	0.33	0.31	0.30	0.30	0.29	0.28	0.28
friction, f										

Table 3: Side Friction Factor

Design speed	Side friction
(km/h)	factor, f
30	0.17
40	0.17
50	0.16
60	0.15
70	0.14
80	0.14
90	0.13
100	0.12

Table 4: Desired minimum horizontal curve radius (JKR)

Design Speed	Minimum Radius (m)				
(km/h)	e = 6%	e = 10%			
120	710	570			
100	465	375			
80	280	230			
60	150	125			
50	100	85			
40	60	50			
30	35	30			
20	15	15			

SEMESTER/SESSION : I/ 2014/2015

PROGRAMME

: 3BFF

COURSE

: HIGHWAY ENGINEERING

COURSE CODE

: BFC31802

APPENDIXES

Table 5. Axle-Load Data

(4)	(2)	(3)	(4)
(1)	(~)	Axles per	
	Axles per	1000	Axles in
Axle load,	1000	trucks	design
kN	trucks	(adjusted)	period
Single axles			
125-133	0.28	0.58	6,310
115-125	0.65	4.35	14,690
107-115	1.33	2.77	30,140
97.8-107	2.84	5.92	64,410
88.8-97.8	4.72	9.83	106,900
80.0-88.8	10.40	21.67	235,800
71.1-80.0	13.56	28.24	307,200
62.2-71.1	18.64	38.83	422,500
53.3-62.2	25.89	53.94	586,900
44.4-53.3	81.05	168.85	1,837,000
Tandem axles			
213-231	0.94	1.96	21,320
195-213	1.89	3.94	42,870
178-195	5.51	11.48	124,900
160-178	16.45	34.27	372,900
142-160	39.08	81,42	885,800
125-142	41:06	85.54	930,700
107-125	73.07	152.23	1,656,000
88.8-107	43.45	90.52	984,900
71.1-88.8	54.15	112.81	1,227,000
53.3-71.1	59.85	124.69	1,356,000

Columns 1 and 2 derived from loadometer W-4 Table. This table also shows 13,215 total trucks counted with 6,918 two-axle, four-tire trucks (52%). Column 3; Column 2 values adjusted for two-axle, four-tire trucks; equal to Column 2/(1-52/100).

Column 4 = Column 3 x (trucks in design period)/1000. See sample problem, Design 1, in which trucks in design period (one direction) total 10,880,000.

BFC 31802

FINAL EXAMINATION

SEMESTER/SESSION : I/ 2014/2015

: 3BFF

COURSE

: HIGHWAY ENGINEERING

PROGRAMME COURSE CODE

: BFC31802

Table 6b: Equivalent Stress-Concrete Shoulder (Single Axle/Tandem Axle)

Slab		· ko	of subgrade-s	subbase (MPa	e/m)	
thickness (mm)	20	40	60	80	140	180
100	4.18/3.48	3.65/3.10	3.37/2.94	3.19/2.85	2.85/2.74	2.72/2.72
110	3.68/3.07	3.23/2,71	2.99/2.56	2.83/2.47	2.55/2.35	2.43/2.33
120	3.28/2.75	2.88/2.41	2.67/2.26	2.54/2.17	2.29/2.05	2.19/2.02
130	2.95/2.49	2.60/2.17	2.41/2.02	2.29/1.94	2.07/1.82	1.99/1.7
140	2.68//2.27	2.36/1.97	2.19/1.83	2.08/1.75	1.89/1.63	1.81/1.5
150	2.44/2.08	2.15/1.80	2.00/1.67	1.90/1.59	1.73/1.48	1.66/1.4
160	2.24/1.93	1.97/1.66	1.84/1.53	1.75/1.46	1.59/1.35	1.53/1.3
. 170	2.06/1.79	1.82/1.54	1.70/1.42	1.62/1.35	1.48/1.24	1.42/1.20
180	1.91/1.67	1.69/1.43	1.57/1.32	1.50/1.25	1.37/1.15	1.32/1.1
190	1:77/1.57	1.57/1.34	1.46/1.23	1.40/1.17	1.28/1.07	1.23/1.03
200	0,65/1.48	1.46/1.26	1.37/1.16	1.30/1.10	1.19/1.00	1.15/0.9
210	1.55/1.40	1.37/1.19	1.28/1.09	1.22/1.03	1.12/0.93	1.08/0.90
220	1.45/1.32	1.29/1.12	1.20/1.03	1.15/0.97	1.05/0.88	1.01/0.8
230	1.37/1.26	1.21/1.07	1.13/0.98	1.08/0.92	0.99/0.63	0.96/0.80
240	1.29/1.20	1.15/1.01	1.07/0.93	1.02/0.87	0.94/0.79	0.90/0.70
250	1.22/1.14	1.08/0.97	1.01/0.88	0.97/0.83	0.89/0.75	0.86/0.72
260	1/16/1.09	1.03/0.92	0.96/0.84	0.92/0.79	0.84/0.71	0.81/0.68
270	1.10/1.04	0.98/0.88	0.91/0.81	0.87/0.76	0.80/0.68	0.77/0.65
280	1.05/1.00	0.93/0.85	0.87/0.77	0.83/0.73	0.76/0.65	0.74/0.62
290	1.00/0.96	0.89/0.81	0.83/0.74	0.79/0.70	0.73/0.62	0.70/0.60
300	0.95/0.93	0.85/0.78	0.79/0.71	0.76/0.67	0.70/0.60	0.67/0.57
310	0.91/0.89	0.81/0.75	0.76/0.69	0.72/0.64	0.67/0,58	0.64/0.55
320	0.87/0.86	0.78/0.73	0.73/0.66	0.69/0.62	0.64/0.55	0.62/0.53
330	0.84/0.83	0.74/0.70	0.70/0.64	0.67/0.60	0.61/0:53	0.59/0.51
340	0.80/0.80	0.71/0.68	0.67/0.62	0.64/0.58	0.59/0.52	0.57/0.49
350	0.77/0.78	0.69/0.66	0.64/0.60	0.61/0.56	0.57/0.50	0.55/0.47

SEMESTER/SESSION : I/ 2014/2015

COURSE

: HIGHWAY ENGINEERING

PROGRAMME : 3BFF COURSE CODE : BFC31 : BFC31802

Table 7a. Erosion Factors—Doweled Joints, No Concrete Shoulder (Single Axle/Tandem Axle)

Slab		kot		ubbase (MPa	/m)	100
thickness (mm)	. 20	_ 40	60	80	140	180
100	3.76/3.8	3.752/3.79	3.74/3.77	3.74/3.76	3.72/332	3.70/3.70
110	3.63/3:71	3.62/3.67	3.61/3.65	3.61/3.63	3.59/3.60	3.58/3.58
120	3.52/3.61	3,50/3.56	3,49/3.54	3.49/3.52	3,47/3,49	3.46/3.47
130	3.74/3.52	3.39/3.47	3.39/3.44	3.38/3.43	3.37/3.39	3.35/3.37
140	3.31/3.43	3.30/3.38	3.29/3.35	3.28/3.33	3.27/3.30	3.26/3.28
150	3.22/3.36	3.21/3.30	3.20/3.27	3.19/3.25	3,17/3,21	3:16/3.19
160	3,14/3.28	3,12/3.22	3.11/3.19	3.10/3.17	3.09/3.13	3.08/9.12
170	3.06/3.22	3.04/3.15	3.03/3.12	3.02/3.10	3.01/3.06	3.00/3.04
180	2.99/3.16	2.97/3.09	2.96/3.06	2.95/3.03	2.93/2.99	2,92/2.97
190	2.92/3.10	2.90/3.03	2.88/2.99	2.88/2.97	2.86/2.93	2.85/2.91
200	2,85/3.05	2.83/2.97	2.82/2.94	2.81/2.91	2.79/2.87	2.78/2.85
210	2.79/2.99	2,77/2,92	2.75/2.88	2.75/2.86	2.73/2.81	2.72/2.79
. 220	2.73/2.95	2.71/2.87	2.69/2.83	2.69/2.80	2.67/2.76	2.66/2.73
230	2.67/2.90	2.65/2.82	2.64/2.78	2.63/2.75	2.61/2.70	2,60/2.68
240	2.62/2.86	2.60/2.78	2.58/2.73	2.57/2.71	2.55/2.66	2.54/2.63
250.	2.57/2.8	2 2.54/2.73	2.53/2.69	2.52/2.66	2.50/2.61	2.49/2.59
260	2.52/2.78	2,49/2,69	2.48/2.65	2.47/2.62	2.45/2.56	2.44/2.54
270	2.47/2.74	2.44/2.65	2.43/2.61	2.42/2.58	2.40/2.52	2.39/2.50
280	2.42/2.71	2.40/2.62	2.38/2.57	2.37/2.54	2.35/2.48	2.34/2.46
290	2.38/2.67	2.35/2.58	2.34/2.53	2.33/2.50	2,31/2.44	2.30/2.42
300	2.34/2.64	2.31/2.55	2.30/2.50	2.29/2.46	2.26/2.41	2.26/2.38
310	2:29/2.61	2.27/2.51	2.25/2.46	2.24/2.43	2.22/2.37	2,21/2.34
' 320	2.25/2.58	2.23/2.48	2.21/2.43	2.20/2.40	2.18/2.33	2.17/2.31
330	2.21/2.55	2.19/2.45	2.17/2.40	2.16/2.36	2.14/2.30	2.13/2.28
340	2.18/2.52	2.15/2.42	2.14/2.37	2.12/2.33	2.10/2.27	2.09/2.24
350	2.14/2.49	2.11/2.39	2.10/2.34	2.09/2.30	2.07/2.24	2.06/2.21

BFC 31802

FINAL EXAMINATION

SEMESTER/SESSION : I/ 2014/2015

COURSE CODE : 3BFF : BFC21

COURSE

: HIGHWAY ENGINEERING

: BFC31802

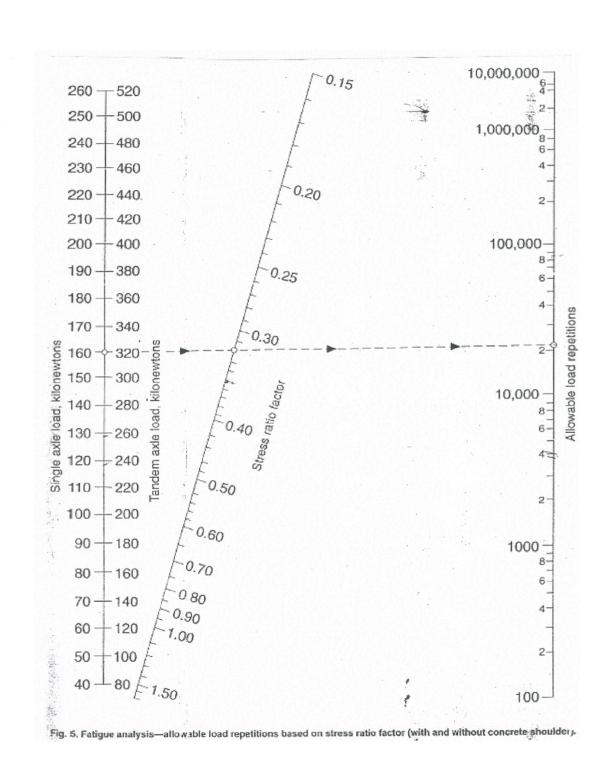
Table 8a. Erosion Factors-Doweled Joints, Concrete Shoulder (Single Axle/Tandem Axle)

Slab		ko	subgrade-su	ubbase (MPa	/m)	
thickness (mm)	20	_40 _	60	80	140%	180
100	3.27/3.25	3.24/3.17	3.22/3.14	3.21/3.12	3.17/3.1	3.15/3.11
110	3.16/3.16	3.12/3.07	3.10/3.03	3.09/3.00.	3.05/2.98	3.03/2.97
- 120	3.05/3.08	3.01/2.98	2.99/2.93	2.98/2.90	2.94/2.86	2.92/2.84
130	2.96/3.01	2.92/2.90	2.89/2.85	2.88/2.81	2.84/2.76	2.82/2.74
140	2.87/2.94	2.82/2.83	2.80/2.77	2.78/2.74	2.75/2.67	2.73/2.65
150	2.79/2.88	2.74/2.77	2,72/2.71	2.70/2.67	2.67/2.60	2.65/2.57
160	2.71/2.82	2.66/2.71	2,64/2.65	2.62/2.60	2.59/2.53	2.57/2.50
170	2.64/2.77	2.59/2.65	2.57/2.59	2.55/2.55	2.51/2.46	2.49/2.43
~ 180 °	2.57/2.72	2.52/2.60	2.50/2.54	2.48/2.49	2.44/2.41.	2.42/2.37
190	2.51/2.67	2.46/2.56	2.43/2.49	2.41/2.44	2.38/2.35	2.36/2.32
200	2.45/2.63	2.40/2.51	2.37/2.44	2.35/2.40	2.31/2.31	2.30/2.27
210	2,39/2.58	2.34/2.47	2.31/2.40	2.29/2.35	2.26/2.26	2.24/2.22
220	2,34/2.54	2.29/2.43	2.26/2.36	2.24/2.31	2.20/2.22	2,18/2.18
230	2.29/2.50	2.23/2.39	2.21/2.32	2.19/2.27	2.15/2.18	2.13/2.13
240	2.24/2.46	2.18/2.35	2.16/2.28	2.13/2.23	2.10/2.14	2.08/2.10
250	2,19/2,43	2.14/2.31	2.11/2.24	2.09/2.20	2.05/2.10	2.03/2.06
260-	2.15/2.39	2.09/2.28	2.06/2.21	2.04/2.16	2.00/2.07	1.98/2.02
270	2.10/2:36	2.05/2.24	2.02/2.18	2.00/2.13	1.96/2.03	1.94/1:99
280	2.06/2.32	2.01/2.21	1.98/2.14	1.95/2.10	1.91/2.00	1.89/1.96
290	2.02/2.29	1.97/2.18	1.93/2.11	1.91/2.06	1.87/1.97	1.85/1.93
300	1.98/2.26	1.93/2.15	1.90/2.08	1.87/2.03	1.83/1.94	1.81/1.90
310	1.95/2.23	1.89/2.12	1,86/2.05	1.84/2.01	1.79/1.91	1.77/1.87
1 320	1.91/2.20	1.85/2.09	1,82/2.03	1.80/1.98	1.76/1.88	1.74/1.84
330	1.87/2.17	1.82/2.06	1.78/2.00	1.76/1.95	1.72/1.86	1.70/1.81
340	1.84/2.15	1.78/2.04	1.75/1.97	1.73/1.92	1.69/1.83	1.67/1.79
340	1.81/2.12	1,75/2.01	1.72/1.95	1.69/1.90	1.65/1.80	1.63/1.76

SEMESTER/SESSION

I/ 2014/2015

PROGRAMME


3BFF

COURSE

HIGHWAY ENGINEERING

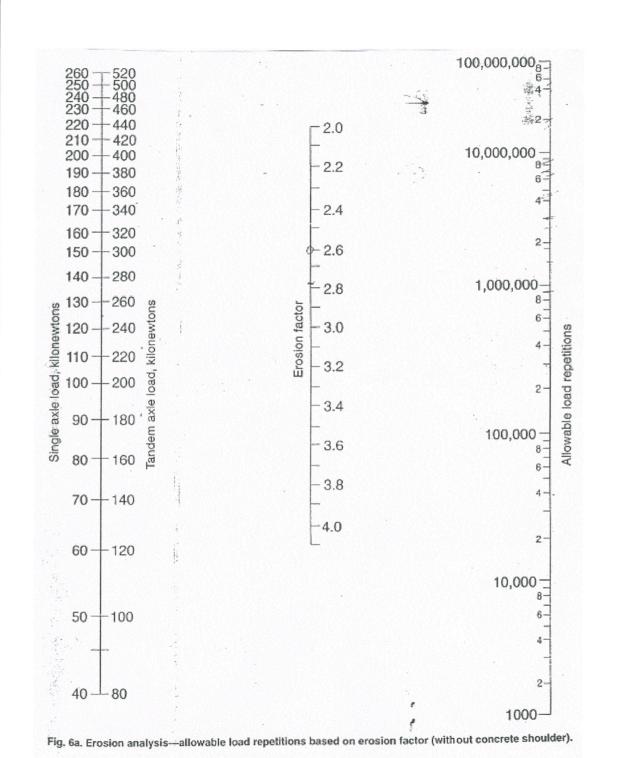
COURSE CODE

BFC31802

14

SEMESTER/SESSION:

COURSE


I/ 2014/2015

HIGHWAY ENGINEERING

PROGRAMME

3BFF

COURSE CODE : BFC31802

SEMESTER/SESSION :

I/ 2014/2015

PROGRAMME

: 3BFF

COURSE

HIGHWAY ENGINEERING

COURSE CODE

BFC31802

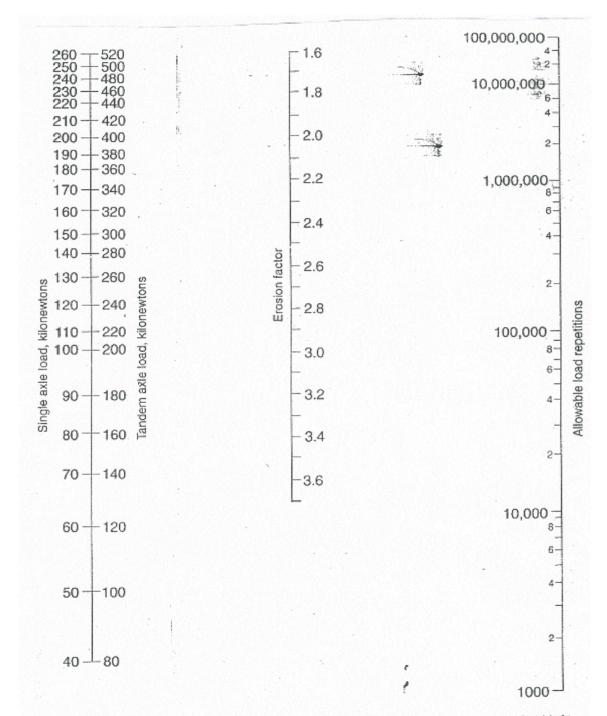


Fig. 6b. Erosion analysis—allowable load repetitions based on erosion factor (with concrete shoulder).