

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2013/2014**

COURSE NAME

: CIVIL ENGINEERING MATHEMATICS III

COURSE CODE

: BFC 24103

PROGRAMME

: 2 BFF

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 3 HOURS

INSTRUCTION : ANSWERS ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

Find the values of all relative extrema and saddle points of the function Q1 (a)

$$f(x, y) = 4xy - x^4 - y^4 + 10.$$
 (10 marks)

(10 marks)

(b) Evaluate
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2+y^2)^{3/2} dz dy dx.$$

(10 marks)

The displacement of a particle at time t is given by Q2(a)

$$\mathbf{r}(t) = 3\cos t \,\mathbf{i} + 3\sin t \,\mathbf{j} + 4t \,\mathbf{k}, \ 0 \le t \le 2\pi.$$

(i) Find the velocity $\mathbf{v}(t)$, the unit tangent vector $\mathbf{T}(t)$, and the unit normal vector N(t) at $t = \pi$.

(6 marks)

Calculate the arc length of $\mathbf{r}(t)$. (ii)

(2 marks)

Sketch the graph of $\mathbf{r}(t)$. (iii)

(2 marks)

(b) Find the moment of inertia about z – axis, I_z of a solid G with density $\delta(x, y, z) = 4$, where G is the solid bounded by the spheres

$$x^{2} + y^{2} + z^{2} = 4$$
 and $x^{2} + y^{2} + z^{2} = 9$. (10 marks)

Evaluate the line integral Q3 (a)

$$\int_{C} (x^{2} + y^{2} - x) dx + y\sqrt{x^{2} + y^{2}} dy$$

where C is the path consists of a line segment from (0,0) to (1,0) and along a semicircle $y = \sqrt{1 - x^2}$ from (1, 0) to (-1, 0).

(10 marks)

- Given the vector field $\mathbf{F}(x, y, z) = 2xy \mathbf{i} + (x^2 + z^2) \mathbf{j} + 2yz\mathbf{k}$. (b)
 - Show that **F** is a conservative vector field. (i)

(3 marks)

Find its potential function $\phi(x, y, z)$. (ii)

(5 marks)

Hence, find the work done in this field to move an object from a (iii) point (1,0,0) to $(0,1,2\pi)$.

(2 marks)

Q4 (a) Use Green's theorem to evaluate the integral

$$\oint_C x^2 y \, dx + \left(y + xy^2\right) dy,$$

where C is the boundary of the region enclosed by $y = x^2$ and $x = y^2$, and curve C is oriented counterclockwise.

(10 marks)

(b) Use Stokes' theorem to evaluate the work done by the force field

$$\mathbf{F}(x, y, z) = xz \,\mathbf{i} + xy^2 \,\mathbf{j} + 3xz \,\mathbf{k}$$

along the curve C where C is the intersection between the cylinder $x^2 + y^2 = 4$ and the plane y + z = 3 oriented counter clockwise.

(10 marks)

Q5 (a) Evaluate $\iint_S (1-x^2-y^2) dS$, where S is the surface of the hemisphere $\int_S x^2 + y^2 + z^2 = 1$ that lies over the xy-plane.

(10 marks)

(b) Let S be the surface of a solid bounded by the paraboloid $z = 4 - x^2 - y^2$ and the xy-plane, oriented by an outwards unit normal vector. Use the Divergence theorem to evaluate

$$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \ dS,$$

the flux of the vector field $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ over the surface S.

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2013/2014 SUBJECT: CIVIL ENGINEERING

MATHEMATICS III

PROGRAMME: 2 BFF COURSE CODE: BFC 24103

Formulae

Polar coordinate: $x = r \cos \theta$, $y = r \sin \theta$, $\theta = \tan^{-1}(y/x)$, and

$$\iint\limits_R f(x,y)dA = \iint\limits_R f(r,\theta)\, r\, dr\, d\theta$$

Cylindrical coordinate: $x = r\cos\theta$, $y = r\sin\theta$, z = z,

$$\iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r dz dr d\theta$$

Spherical coordinate: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$,

$$x^2 + y^2 + z^2 = \rho^2,$$

$$0 \le \theta \le 2\pi$$
, $0 \le \phi \le \pi$, and

$$\iiint\limits_{G} f(x, y, z) dV = \iiint\limits_{G} f(\rho, \phi, \theta) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

Directional derivative: $D_{\mathbf{u}} f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$

Let $\mathbf{F}(x, y, z) = M \mathbf{i} + N \mathbf{j} + P \mathbf{k}$ is vector field, then

the **divergence** of
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

the curl of

$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

Let C is a smooth curve given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, t is parameter, then

the unit tangent vector:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

the unit normal vector:

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

the binormal vector:

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

the curvature:

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

the radius of curvature:

$$\rho = 1/\kappa$$

BFC 24103

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2013/2014

SUBJECT: CIVIL ENGINEERING **MATHEMATICS III**

PROGRAMME: 2 BFF

COURSE CODE: BFC 24103

Green Theorem: $\oint_C M dx + N dy = \iint_C \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$

Gauss Theorem: $\iint_{C} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{C} \nabla \cdot \mathbf{F} \, dV$

Stokes' Theorem: $\oint \mathbf{F} \cdot d\mathbf{r} = \iint (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$

Arc length: If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $t \in [a,b]$, then the arc length

$$s = \int_{a}^{b} \|\mathbf{r}'(t)\| dt = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $t \in [a,b]$, then the arc length

$$s = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

Tangent Plane:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Extreme of two variable functions

$$D(x, y) = f_{xx}(x, y) f_{yy}(x, y) - (f_{xy}(x, y))^{2}$$

Case 1: If D(a,b) > 0 and $f_{xx}(x,y) < 0$ then f has local maximum at (a,b)

Case 2: If D(a,b) > 0 and $f_{xx}(x,y) > 0$ then f has local minimum at (a,b)

Case 3: If D(a,b) < 0 then f has a saddle point at (a,b)

Case4: If D(a,b) = 0 then no conclusion can be made.

In 2-D: Lamina

Mass: $m = \iint \delta(x, y) dA$, where $\delta(x, y)$ is a density of lamina.

Moment of mass: (i) about y-axis, $M_y = \iint x \, \delta(x, y) dA$,

(ii) about x-axis,
$$M_x = \iint_R y \, \delta(x, y) dA$$

 $(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$ Centre of mass,

Moment inertia: (i) $I_y = \iint_D x^2 \delta(x, y) dA$,

(ii)
$$I_x = \iint_D y^2 \delta(x, y) dA$$
,

(iii)
$$I_o = \iint_R (x^2 + y^2) \delta(x, y) dA$$

BFC 24103

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2013/2014

SUBJECT : CIVIL ENGINEERING

PROGRAMME: 2 BFF COURSE CODE: BFC 24103

MATHEMATICS III

In 3-D: Solid

Mass, $m = \iiint_G \delta(x, y, z) dV$. If $\delta(x, y, z) = c$, c is a constant, then $m = \iiint_G dA$ is volume.

Moment of mass

(i) about yz-plane, $M_{yz} = \iiint_G x \delta(x, y, z) dV$

(ii) about xz-plane, $M_{xz} = \iiint_G y \delta(x, y, z) dV$

(iii) about xy-pane, $M_{xy} = \iiint z \delta(x, y, z) dV$

Centre of gravity, $(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$

Moment inertia

(i) about x-axis: $I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV$

(ii) about y-axis: $I_y = \iiint_C (x^2 + z^2) \delta(x, y, z) dV$

(iii) about z-axis: $I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$