

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2013/2014**

COURSE NAME

: STATIC AND DYNAMIC

COURSE CODE

: BFC 1022/BFC10102/BFC 10103

PROGRAMME

: 1 BFF

:

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 2 HOURS AND 30 MINUTES

INSTRUCTION

A) ANSWER THREE (3)

QUESTIONS ONLY

B) ANSWER All QUESTIONS

THIS QUESTION PAPER CONSISTS OF **ELEVEN** (11) PAGES

CONFIDENTIAL

SECTION A

Define the difference between mass and weight. Q1 (a) (5 marks) Figure Q1 shows the truss structure. Replace the loading system acting on (b) the structure by an equivalent force and couple moment at point C (ignore the reaction at A and B) (10 marks) If the structure in Figure Q1 is in equilibrium and support by roller at A (c) and pinned at E, calculate the reaction force of the structure. (10 marks) Draw free body diagram of three dimension rigid body for Q2(a) i. Roller (1 mark) ii. Cable (1 mark) Ball and socket iii. (3 marks) The building slab is subjected to three parallel column loadings. Determine (b) the equivalent resultant force in Figure Q2 (a) and specify its location (x,y,z)(9 marks) Determine the tension cables A and E and the x, y, z components of (c) reaction at the ball and socket joint at C in Figure Q2 (b). (11 marks)

Q3 (a) Explain briefly the friction law and its basic mechanism. (7 marks)

- (b) The block of weight 100 kg is pulled by rope with a pulley and connected with a small block of m kg. A 200 N force also acts horizontally as shown in Figure Q3 (a). If the coefficients of friction between the block and plane are $\mu_s = 0.3$ and $\mu_k = 0.25$:
 - i. Draw the free-body diagrams.

(2 marks)

ii. Calculate the friction force, if m = 2 kg and m = 5 kg. Determine whether the block is moving or in the verge of impending motion. (Assume no friction at the pulley)

(10 marks)

(c) Figure Q3 (b) shows the static equilibrium of pulley system that carries a block of weight 10 kN. Determine the tension force T in the cable of the pully system. Show appropriate free-body diagrams to support the calculation.

(6 marks)

Q4 (a) Explain the difference between centre of gravity and centroid of a body.

(4 marks)

(b) Determine the centroid of the composite area as shown in Figure **Q4** and with the aid of sketching, shows the location of centroid.

(8 marks)

(c) Determine the moment of inertia about the x-axis and y-axis of the shaded area as shown in Figure Q4.

(12 marks)

SECTION B

Q5 (a) Explain briefly the term:

(i) Displacement and distance

(2 marks)

(ii) Speed and velocity

(2 marks)

(iii) Acceleration

(2 marks)

(b) A car bumper is designed to bring a 1800 kg car to a stop from a speed of 2.23 m/s at displacement 150 mm. Assuming the constant deceleration, determine the average force on the bumper when it stop.

(9 marks)

- (c) Three small sphere A, B and C with a mass of 3 kg, 4 kg and 7 kg respectively are arranged aline as shown in Figure Q5. Initially, the sphere B is placed in the static condition, while the sphere A is moving with a velocity 4u collides towards sphere B and collides. Then, sphere C move to the right direction with a velocity u. The elastic coefficient between sphere A and B is 3/4 and between B and C is 1/2. Determine:
 - (i) The velocity of sphere A and B after the first collision. Explain the condition of both sphere.

(4 marks)

(ii) The lost of energy from the first collision between sphere A and B.

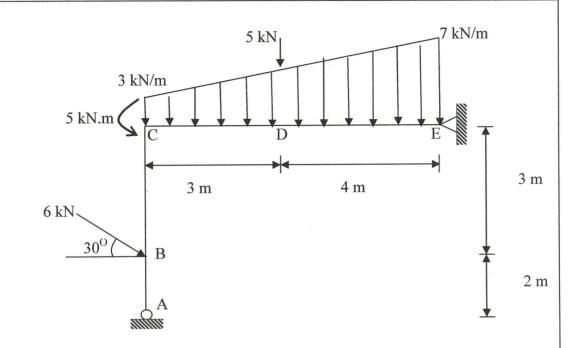
(2 marks)

(iii) The velocity of sphere B and C after the second collision. Explain the condition of both spheres.

(4 marks)

- END OF QUESTION -

SEMESTER/SESSION: SEM I/2013/2014


COURSE NAME

: STATICS AND DYNAMICS

PROGRAMME: 1 BFF

COURSE CODE: BFC1022/

BFC10102/BFC10103

FIGURE Q1

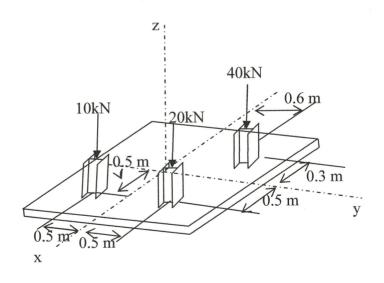


FIGURE Q2 (a)

SEMESTER/SESSION: SEM I/2013/2014


COURSE NAME

: STATICS AND DYNAMICS

PROGRAMME: 1 BFF

COURSE CODE: BFC1022/

BFC10102/BFC10103

FIGURE Q2 (b)

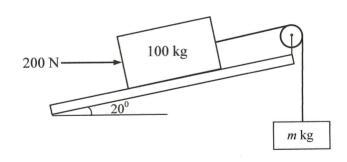


FIGURE Q3(a)

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: STATICS AND DYNAMICS

PROGRAMME: 1 BFF

COURSE CODE: BFC1022/

BFC10102/BFC10103

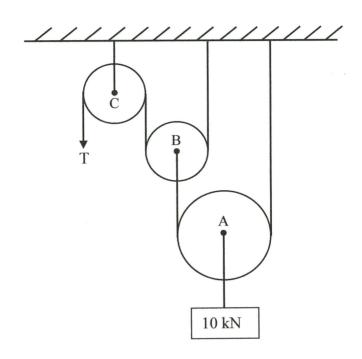
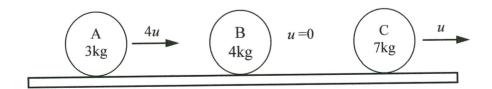


FIGURE Q3(b)

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME


: STATICS AND DYNAMICS

PROGRAMME: 1 BFF COURSE CODE: BFC1022/

BFC10102/BFC10103

FIGURE Q4

FIGURE Q5

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : STATICS AND DYNAMICS

PROGRAMME: 1 BFF

COURSE CODE: BFC1022/

BFC10102/BFC10103

APPENDIX

TABLE 1 : CENTROID

	SHAPE	\overline{X}	\overline{y}	Α
Triangle	$ \begin{array}{c c} & \downarrow \\ & \downarrow \\$	<u>b</u> 3	<u>h</u> 3	$\frac{1}{2}bh$
Semicircle	r $\frac{ y }{\bar{y}}$	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter circle	\overline{x}	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Rectangle	$ \begin{array}{c cccc} & y & & & & & \\ & h & & & & \downarrow & & \\ & h & & & & \overline{y} & & \\ & b & & & \uparrow & & \\ \end{array} $	<u>b</u> 2	$\frac{h}{2}$	bh
Parabolic spanderl	$\begin{array}{c c} & & \\ & & \\ \hline & & \\ &$	3 <i>b</i> 4	3h 10	<u>bh</u> 3

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : STATICS AND DYNAMICS

PROGRAMME: 1 BFF

COURSE CODE: BFC1022/

BFC10102/BFC10103

TABLE 2: MOMENT OF INERTIA

Semicircle	$\frac{1}{\sqrt{y}} \frac{4r}{3\pi}$	$I_x = I_y = \frac{1}{8}\pi r^4$ $J = \frac{1}{4}\pi r^4$
Quarter circle	\overline{x}	$I_x = I_y = \frac{1}{16}\pi r^4$ $J = \frac{1}{8}\pi r^4$

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: STATICS AND DYNAMICS

PROGRAMME: 1 BFF

COURSE CODE: BFC1022/

BFC10102/BFC10103

LIST OF EQUATION

$$s = v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2as$$

Elastic Collision

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

$$m_1 u_1 - m_2 u_2 = m_1 v_1 + m_2 v_2$$

$$m_1 u_1 + 0 = m_1 v_1 + m_2 v_2$$

Inelastic Collision

$$m_1 u_1 + m_2 u_2 = (m_1 + m_2) v_1$$

Coefficient of Elasticity

$$\frac{v_2 - v_1}{u_1 - u_2} = e \quad \dots \quad 0 \le x \le 1$$

If e = 0, the material is not elastic

If e=1, the material is fully elastic.

If
$$e = 0$$
, inelastic collision, $v_1 = v_2 = v \rightarrow m_1 u_1 + m_2 u_2 = (m_1 + m_2)v$

If e = 1, elastic collision, $v_2 - v_1 = u_1 - u_2$

Hooke's Law

$$U = \frac{1}{2} Fx \quad \text{(a)} \quad \frac{1}{2} Fs$$
$$= \frac{1}{2} kx^{2}$$
$$= \frac{1}{2} k(\Delta x)^{2}$$

Energy, power, work

$$E = mgh$$

$$E = \frac{1}{2} mv^2$$

$$P = \frac{Work}{time} = \frac{W(J)}{T(s)}$$

$$Work = \frac{1}{2}F \cdot (\Delta x)^2$$