CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME

: CIVIL ENGINEERING MATHEMATICS II

COURSE CODE

: BFC 14003

PROGRAMME

: 1 BFF / 2 BFF

EXAMINATION DATE : JUNE 2013

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

PART A

Q1 A periodic function is defined by

$$f(x) = \begin{cases} 2\pi, & -\pi < x < 0 \\ 2x, & 0 < x < \pi \end{cases}$$
$$f(x) = f(x + 2\pi).$$

(a) Sketch the graph of the function over $-\pi < x < \pi$.

(2 marks)

(b) Determine whether the function is even, odd or neither.

(1 mark)

(c) Show that the Fourier series of the function f(x) is

$$\frac{3\pi}{2} + 2\sum_{n=1}^{\infty} \frac{\left[(-1)^n - 1 \right]}{\pi n^2} \cos(nx) - 2\sum_{n=1}^{\infty} \frac{1}{n} \sin(nx).$$

(17 marks)

- Q2 (a) Given that $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \dots$
 - (i) Find the first three nonzero terms of a power series for $\frac{\sin x}{\sqrt{x}}$.

(3 marks)

(ii) Hence, evaluate $\int_0^1 \frac{\sin x}{\sqrt{x}} dx$ by using the series expansion.

(3 marks)

(b) (i) Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$ converges or diverges by using ratio test.

(3 marks)

(ii) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges absolutely, converges conditionally, or diverges by using a suitable convergence test.

(5 marks)

(c) Find the radius of convergence of $\sum_{n=0}^{\infty} 3(x-2)^n$.

(6 marks)

PART B

Q3 (a) Solve the differential equation given below by using the method of separation of variables,

$$(1+x)\frac{dy}{dx} = x\sqrt{1-y}.$$

Hence, find the particular solution when y(1) = 0.

(7 marks)

(b) By using the substitution of y = xv and $\frac{dy}{dx} = x\frac{dv}{dx} + v$, find the solution of

$$\frac{dy}{dx} = \frac{x^2 + y^2}{3xy}.$$

(6 marks)

(c) In a certain culture of bacteria, the rate of increase is proportional to the number of present. If it is found that the number doubles in 4 hours, how many may expected at the end of 12 hours?

[Hint: $\frac{dN}{dt} = kN$, where N denotes the number of bacteria at time, t hours and k is the proportionality factor.]

(7 marks)

Q4 (a) Use the method of variation of parameters to solve

$$y'' + y = \sec x \tan x,$$

which satisfies the initial conditions y(0) = 0 and y'(0) = 2.

[Hint: $\sec^2 x + \tan^2 x = 1$, $\int \sec^2 x \, dx = \tan x$.]

(10 marks)

(b) A spring is stretched 0.1 m (= Δl) when a 4 kg mass (= M) is attached. The weight is then pulled down an additional 0.2 m and released with an upward velocity of 4 m/s. Neglect damping, c. If the general equation describing the spring-mass system is

$$Mu'' + cu' + ku = 0.$$

find an equation for the position of the spring at any time t.

[Hint: weight, W = Mg, $g \approx 9.8$, $k = \frac{W}{\Delta l}$.]

(10 marks)

Q5 (a) Find

(i)
$$\mathcal{L}\left\{e^{3t}t^2 + \frac{4}{e^{5t}}\right\}.$$

(3 marks)

(ii)
$$\mathcal{L}\left\{t\cosh 4t + t^3\delta(t-3)\right\}.$$

(3 marks)

(iii)
$$\mathcal{L}\left\{\sinh(3t)+e^{3t}H(t-3)\right\}.$$

(4 marks)

(b) By using Laplace transform, solve

$$y'' - 2y' + y = e',$$
 $y(0) = -2, y'(0) = -3.$

(10 marks)

Q6 (a) Find

(i)
$$\mathcal{L}^{-1}\left\{\frac{5s}{s^2-4}+\frac{6}{(s-2)^2+4}\right\}$$
.

(3 marks)

(ii)
$$\mathcal{L}^{-1} \left\{ \frac{16s^2}{(s-3)(s+1)^2} \right\}$$
.

(7 marks)

(b) Find the general solution for the second order differential equation

$$y'' - 3y' + 2y = x^2 + 2 - 5\sin x$$

by using the undetermined coefficient method.

(10 marks)

-END OF QUESTION-

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 SUBJECT : CIVIL ENGINEERING MATHEMATIC II COURSE: 1 BFF / 2 BFF SUBJECT CODE: BFC 14003

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Characteristic equation: $am^2 + bm + c = 0$.				
Case	The roots of characteristic equation	General solution		
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$		
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$		
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$		

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

f(x)	$y_p(x)$		
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x'(B_nx^n + B_{n-1}x^{n-1} + \cdots + B_1x + B_0)$		
Ce ^{ax}	$x'(Pe^{ax})$		
$C\cos\beta x$ or $C\sin\beta x$	$x'(P\cos\beta x + Q\sin\beta x)$		
$P_n(x)e^{\alpha x}$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)e^{\alpha x}$		
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)\cos\beta x +$		
$\lim_{n \to \infty} \sin \beta x$	$x'(C_nx^n + C_{n-1}x^{n-1} + \cdots + C_1x + C_0)\sin\beta x$		
$Ce^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x'e^{ax}(P\cos\beta x + Q\sin\beta x)$		
$B(x)e^{\alpha x} \left[\cos \beta x\right]$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)e^{\alpha x}\cos\beta x +$		
$P_{n}(x)e^{\alpha x}\begin{cases}\cos\beta x\\\sin\beta x\end{cases}$	$\begin{cases} x'(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x + \\ x'(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})e^{\alpha x}\sin\beta x \end{cases}$		

Note: r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y = uy_1 + vy_2,$$

where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
, $v = \int \frac{y_1 f(x)}{aW} dx + B$ and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$.

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 SEMESTER / SESSION : SEM II / 2012/2013 COURSE : 1 BFF / 2 BFF
SUBJECT : CIVIL ENGINEERING MATHEMATIC II SUBJECT CODE : BFC 14003

COURSE: 1 BFF / 2 BFF

Laplace Transform

$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = F(s)$				
f(t)	F(s)	f(t)	F(s)	
a	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$	
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$	
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e ^{-as}	
cos at	$\frac{s}{s^2+a^2}$	$f(t)\delta(t-a)$	$e^{-ax}f(a)$	
sinh at	$\frac{a}{s^2-a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$	
cosh at	$\frac{s}{s^2-a^2}$	y(t)	Y(s)	
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)	
$e^{at}f(t)$	F(s-a)	y''(t)	$s^2Y(s) - sy(0) - y'(0)$	
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$			

Fourier Series

Fourier series expansion of periodic function with period $2L$	Fourier half-range series expansion	
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$	$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$	
where	where	
$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$	$a_0 = \frac{2}{L} \int_0^L f(x) dx$	
$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$	$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$	
$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} dx$	$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$	